31 research outputs found

    A probabilistic interpretation of the Macdonald polynomials

    Full text link
    The two-parameter Macdonald polynomials are a central object of algebraic combinatorics and representation theory. We give a Markov chain on partitions of k with eigenfunctions the coefficients of the Macdonald polynomials when expanded in the power sum polynomials. The Markov chain has stationary distribution a new two-parameter family of measures on partitions, the inverse of the Macdonald weight (rescaled). The uniform distribution on permutations and the Ewens sampling formula are special cases. The Markov chain is a version of the auxiliary variables algorithm of statistical physics. Properties of the Macdonald polynomials allow a sharp analysis of the running time. In natural cases, a bounded number of steps suffice for arbitrarily large k

    Lattice methods for strongly interacting many-body systems

    Get PDF
    Lattice field theory methods, usually associated with non-perturbative studies of quantum chromodynamics, are becoming increasingly common in the calculation of ground-state and thermal properties of strongly interacting non-relativistic few- and many-body systems, blurring the interfaces between condensed matter, atomic and low-energy nuclear physics. While some of these techniques have been in use in the area of condensed matter physics for a long time, others, such as hybrid Monte Carlo and improved effective actions, have only recently found their way across areas. With this topical review, we aim to provide a modest overview and a status update on a few notable recent developments. For the sake of brevity we focus on zero-temperature, non-relativistic problems. After a short introduction, we lay out some general considerations and proceed to discuss sampling algorithms, observables, and systematic effects. We show selected results on ground- and excited-state properties of fermions in the limit of unitarity. The appendix contains details on group theory on the lattice.Comment: 64 pages, 32 figures; topical review for J. Phys. G; replaced with published versio

    Author index to volumes 301–400

    Get PDF

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Optimal prediction of Markov chains with and without spectral gap

    Full text link
    We study the following learning problem with dependent data: Observing a trajectory of length nn from a stationary Markov chain with kk states, the goal is to predict the next state. For 3kO(n)3 \leq k \leq O(\sqrt{n}), using techniques from universal compression, the optimal prediction risk in Kullback-Leibler divergence is shown to be Θ(k2nlognk2)\Theta(\frac{k^2}{n}\log \frac{n}{k^2}), in contrast to the optimal rate of Θ(loglognn)\Theta(\frac{\log \log n}{n}) for k=2k=2 previously shown in Falahatgar et al., 2016. These rates, slower than the parametric rate of O(k2n)O(\frac{k^2}{n}), can be attributed to the memory in the data, as the spectral gap of the Markov chain can be arbitrarily small. To quantify the memory effect, we study irreducible reversible chains with a prescribed spectral gap. In addition to characterizing the optimal prediction risk for two states, we show that, as long as the spectral gap is not excessively small, the prediction risk in the Markov model is O(k2n)O(\frac{k^2}{n}), which coincides with that of an iid model with the same number of parameters.Comment: 52 page

    Algorithmic and topological aspects of semi-algebraic sets defined by quadratic polynomial

    Get PDF
    In this thesis, we consider semi-algebraic sets over a real closed field RR defined by quadratic polynomials. Semi-algebraic sets of RkR^k are defined as the smallest family of sets in RkR^k that contains the algebraic sets as well as the sets defined by polynomial inequalities, and which is also closed under the boolean operations (complementation, finite unions and finite intersections). We prove new bounds on the Betti numbers as well as on the number of different stable homotopy types of certain fibers of semi-algebraic sets over a real closed field RR defined by quadratic polynomials, in terms of the parameters of the system of polynomials defining them, which improve the known results. We conclude the thesis with presenting two new algorithms along with their implementations. The first algorithm computes the number of connected components and the first Betti number of a semi-algebraic set defined by compact objects in Rk\mathbb{R}^k which are simply connected. This algorithm improves the well-know method using a triangulation of the semi-algebraic set. Moreover, the algorithm has been efficiently implemented which was not possible before. The second algorithm computes efficiently the real intersection of three quadratic surfaces in R3\mathbb{R}^3 using a semi-numerical approach.Comment: PhD thesis, final version, 109 pages, 9 figure
    corecore