329 research outputs found

    Towards a European Smart Energy System - ICT innovation goals and considerations

    Get PDF
    The EU-driven integration of European energy systems and the development of a Smart Energy System involves many key players. The success of a European Smart Energy Systems relies heavily on the development of well-designed ICT solutions in all related sectors. Because such ICT solutions should be well aligned, ICT innovation goals are needed that have the support of key European players and consortia. To this end, Round Tables have been organised by EIT ICT Labs from 2013 onwards, in which key players in the European energy sector establish a common vision on and align forces in the development of a European Smart Energy System. We reflect and build upon these discussions to formulate a joint input to the European goals on ICT and Smart Energy Systems, and for the innovation activities of EIT ICT Labs

    Book of Abstracts:8th International Conference on Smart Energy Systems

    Get PDF

    Decision support methodology for sustainable smart energy systems integration

    Get PDF
    The global demand for energy is continuously increasing, and the carbon dioxide production related to the energy sector represents a large share of the overall anthropogenic greenhouse gas (GHG) emissions, since most of the energy needs are still provided by fossil fuels. To achieve the energy efficiency targets set by EU for the 2030 an energy transition towards more sustainable energy sources is required. The challenge will be the integration of different energy sectors in a smart energy system (SMES). Adopting a circular economy perspective it will be possible to turn the view on waste starting considering them as an energy source allowing more interactions between different stakeholders while exploiting technologies for the reduction of the environmental impact. This change in perspective needs also a change in the paradigm while taking decision on the implementation of this kind of interventions. The aim of this thesis is to fill the gaps in the development of decision support tools aiding the stakeholders in those interventions where SMES are implemented with developing and sustainable solutions

    Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    Get PDF
    International audienceBiofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to the high productivity that can be attained in high-rate raceway ponds. We show, through 3D numerical simulations, that our approach is capable of discriminating between situations where the paddle wheel is rapidly moving water or slowly agitating the process. Moreover, the simulated velocity fields can provide lagrangian trajectories of the algae. The resulting light pattern to which each cell is submitted when travelling from light (surface) to dark (bottom) can then be derived. It will then be reproduced in lab experiments to study photosynthesis under realistic light patterns

    The General and the Specifics:Heating and Cooling Strategies in Smart Energy Systems

    Get PDF

    A Review of Smart Energy Projects & Smart Energy State-of-the-Art

    Get PDF

    Energy system optimisation and smart technologies - a social sciences and humanities annotated bibliography

    Get PDF
    The challenge: * Systems perspectives on energy involve a holistic view on balancing demand and supply; system optimisation can support security of supply, affordability, sustainability and profitability. * A central, and relatively recent, element of system optimisation is the move towards smart grids, and smart technologies, which concern interconnection of system elements usually through the internet. As well as increasing the resilience of the network, it is hoped this will help “citizens take ownership of the energy transition [and] benefit from new technologies”. * ‘Smartification’ of the energy system introduces a range of new societal conditions and consequences. The aim: * European energy policy has so far mainly relied on research from Science, Technology Engineering and Mathematics (STEM) disciplines. Energy-related Social Sciences and Humanities (energy-SSH) have been significantly underrepresented. The aim of this bibliography is to give policymakers a selected yet broad impression of the SSH research community focusing on ‘energy system optimisation and smart technologies’. Wherever possible, policy deductions or research and innovation recommendations are mentioned. Coverage: * Disciplines covered in this bibliography are broadly representative of the current SSH research community in the area, with a slight bias towards Economics, Sociology and Science & Technology Studies. Nevertheless, robust accounts from Psychology, Politics, Ethnography, Development, Environmental Social Science, Geography, Planning, Law, History and other fields are also included. * Geographically, research presented is primarily from Western and Northern Europe, but with diversity across these regions, and inclusion of some Eastern European and non-European contributions. * Techno-economic accounts are very highly represented in the field of energy system optimisation and smart technologies, a fact highlighted by researchers themselves. Much of this research concentrates on financial cost/benefit of smart grid and technical design, while approaches focusing on social practices or user-centric design are increasing but still underrepresented. The latter were deliberately given higher visibility in this bibliography. Key findings: * Numerous papers presented here focus on how questions of smart technology diffusion, innovation, and adoption might be shifted away from monetary incentives or cost/benefit analyses of technologies. * A unifying message across many topics and disciplines - from energy justice or socio-technical scenarios, to Economics or Ethnography - is that co-operation between techno-economic and SSH approaches needs more attention and is crucial for successful smart grid realisation. * Another important debate for SSH researchers is the deconstruction of overly optimistic visions of smart societies. Many authors urge caution in considering the (financial and social) costs and benefits of smart technologies for all of society, including issues of privacy intrusion. There are calls for more research on both policy initiatives, preferably targeting the community level, and clear communication strategies which fully consider these aspects

    ICT Road map for supporting energy systems in smart cities

    Full text link
    This paper introduces a road map for ICTs (Information and communication technologies) supporting planning, operation and management of energy systems in smart cities. The road map summarises different elements that form energy systems in cities and proposes research and technical development (RTD) and innovation activities for the development and innovation of ICTs for holistic design, planning and operation of energy systems. In addition, synergies with other ICT systems for smart cities are considered. There are four main target groups for the road map: 1) citizen; 2) building sector; 3) energy sector; and 4) municipality level. As an example for enabling active participation of citizens, the road map proposes how ICT can enable citizens? involvement among others into building design. The building sector roadmap proposes how ICTs can support the planning of buildings and renovations in the future, as well as how to manage building energy systems. The energy sector road map focuses on city?s energy systems and their planning and management, including e.g. demand side management, management of different district level energy systems, energy performance validation and management, energy data models, and smarter use of open energy data. Moreover, the municipality level road map proposes among others ICTs for better integration of city systems and city planning enabling maximised energy efficiency. In addition, one road map section suggests development needs related to open energy data, including among others the use of energy data and the development and harmonisation of energy data models. The road map has been assembled in the READY4SmartCities project (funded by EU 7th Framework Programme), which focuses on the energy system at the city level, consisting of centralised energy systems and connections to the national level energy grids, as well as interconnections to the neighbourhood and building level energy systems

    Book of abstracts:5th International Conference on Smart Energy Systems in Copenhagen, on 10-11 September 2019.

    Get PDF
    • 

    corecore