190 research outputs found

    Parallel, Series, and Intermediate Interconnections of Optical Nanocircuit Elements Part 1: Analytical Solution

    Full text link
    Following our recent development of the paradigm for extending the classic concepts of circuit elements to the infrared and optical frequencies [N. Engheta, A. Salandrino, A. Alu, Phys. Rev. Lett. 95, 095504 (2005)], in this paper we investigate the possibility of connecting nanoparticles in series and in parallel configurations, acting as nanocircuit elements, In particular, we analyze a pair of conjoined half-cylinders, whose relatively simple geometry may be studied and analyzed analytically. In this first part of the work, we derive a closed-form quasi-static analytical solution of the boundary-value problem associated with this geometry, which will be applied in Part II for a nanocircuit and physical interpretation of these results.Comment: 21 pages, 5 figure

    AFM manipulation of gold nanowires to build electrical circuits

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters , copyright © American Chemical Society after peer review and technical editing by the publisher. To acces final work see “AFM Manipulation of Gold Nanowires To Build Electrical Circuits”, Nano Letters 19.8 (2019): 5459-5468, https://doi.org/10.1021/acs.nanolett.9b01972We introduce scanning-probe-assisted nanowire circuitry (SPANC) as a new method to fabricate electrodes for the characterization of electrical transport properties at the nanoscale. SPANC uses an atomic force microscope (AFM) to manipulate nanowires to create complex and highly conductive nanostructures (paths) that work as nanoelectrodes, allowing connectivity and electrical characterization of other nano-objects. The paths are formed by the spontaneous cold welding of gold nanowires upon mechanical contact, leading to an excellent contact resistance of ∌9 ω/junction. SPANC is an easy to use and cost-effective technique that fabricates clean nanodevices. Hence, this new method can complement and/or be an alternative to other well-established methods to fabricate nanocircuits such as electron beam lithography (EBL). The circuits made by SPANC are easily reconfigurable, and their fabrication does not require the use of polymers and chemicals. In this work, we present a few examples that illustrate the capabilities of this method, allowing robust device fabrication and electrical characterization of several nano-objects with sizes down to ∌10 nm, well below the current smallest size able to be contacted in a device using the standard available technology (∌30 nm). Importantly, we also provide the first experimental determination of the sheet resistance of thin antimonene flake

    A comparative study of semiconductor-based plasmonic metamaterials

    Full text link
    Recent metamaterial (MM) research faces several problems when using metal-based plasmonic components as building blocks for MMs. The use of conventional metals for MMs is limited by several factors: metals such as gold and silver have high losses in the visible and near-infrared (NIR) ranges and very large negative real permittivity values, and in addition, their optical properties cannot be tuned. These issues that put severe constraints on the device applications of MMs could be overcome if semiconductors are used as plasmonic materials instead of metals. Heavily doped, wide bandgap oxide semiconductors could exhibit both a small negative real permittivity and relatively small losses in the NIR. Heavily doped oxides of zinc and indium were already reported to be good, low loss alternatives to metals in the NIR range. Here, we consider these transparent conducting oxides (TCOs) as alternative plasmonic materials for many specific applications ranging from surface-plasmon-polariton waveguides to MMs with hyperbolic dispersion and epsilon-near-zero (ENZ) materials. We show that TCOs outperform conventional metals for ENZ and other MM-applications in the NIR.Comment: 16 pages, 7 figure

    Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons

    Full text link
    In modern integrated circuits and wireless communication systems/devices, three key features need to be solved simultaneously to reach higher performance and more compact size: signal integrity, interference suppression, and miniaturization. However, the above-mentioned requests are almost contradictory using the traditional techniques. To overcome this challenge, here we propose time-domain spoof surface plasmon polaritons (SPPs) as the carrier of signals. By designing a special plasmonic waveguide constructed by printing two narrow corrugated metallic strips on the top and bottom surfaces of a dielectric substrate with mirror symmetry, we show that spoof SPPs are supported from very low frequency to the cutoff frequency with strong subwavelength effects, which can be converted to the time-domain SPPs. When two such plasmonic waveguides are tightly packed with deep-subwavelength separation, which commonly happens in the integrated circuits and wireless communications due to limited space, we demonstrate theoretically and experimentally that SPP signals on such two plasmonic waveguides have better propagation performance and much less mutual coupling than the conventional signals on two traditional microstrip lines with the same size and separation. Hence the proposed method can achieve significant interference suppression in very compact space, providing a potential solution to break the challenge of signal integrity

    The Role of Alternance Symmetry in Magnetoconductance

    Get PDF
    We show that the direction of coherent electron transport across a cyclic system of quantum dots or a cyclic molecule can be modulated by an external magnetic field if the cycle has an odd number of hopping sites, but the transport becomes completely symmetric if the number is even. These contrasting behaviors, which remain in the case of interacting electrons, are a consequence of the absence or presence of alternance symmetry in the system. These findings are relevant for the design of nanocircuits based on coupled quantum dots or molecular junctions.Comment: to be published in PR

    Detection of Tiny Mechanical Motion by Means of the Ratchet Effect

    Get PDF
    We propose a position detection scheme for a nanoelectromechanical resonator based on the ratchet effect. This scheme has an advantage of being a dc measurement. We consider a three-junction SQUID where a part of the superconducting loop can perform mechanical motion. The response of the ratchet to a dc current is sensitive to the position of the resonator and the effect can be further enhanced by biasing the SQUID with an ac current. We discuss the feasibility of the proposed scheme in existing experimental setups.Comment: 8 pages, 9 figure
    • 

    corecore