233,450 research outputs found

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table

    Comparative Analysis of Word Embeddings for Capturing Word Similarities

    Full text link
    Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks. Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings. Determining the most qualitative word embeddings is of crucial importance for such models. However, selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans. In this paper, we explore different approaches for creating distributed word representations. We perform an intrinsic evaluation of several state-of-the-art word embedding methods. Their performance on capturing word similarities is analysed with existing benchmark datasets for word pairs similarities. The research in this paper conducts a correlation analysis between ground truth word similarities and similarities obtained by different word embedding methods.Comment: Part of the 6th International Conference on Natural Language Processing (NATP 2020
    • …
    corecore