3,728 research outputs found

    Theory and practice in the field of foresight

    Get PDF
    Purpose – The paper aims to explore the gap between theory and practice in foresight and to give some suggestions on how to reduce it. Design/methodology/approach – Analysis of practical foresight activities and suggestions are based on a literature review, the author's own research and practice in the field of foresight and futures studies, and her participation in the work of a European project (COST A22). Findings – Two different types of practical foresight activities have developed. One of them, the practice of foresight of critical futures studies (FCFS) is an application of a theory of futures studies. The other, termed here as praxis foresight (PF), has no theoretical basis and responds directly to practical needs. At present a gap can be perceived between theory and practice. PF distinguishes itself from the practice and theory of FCFS and narrows the construction space of futures. Neither FCFS nor PF deals with content issues of the outer world. Reducing the gap depends on renewal of joint discourses and research about experience of different practical foresight activities and manageability of complex dynamics in foresight. Production and feedback of self-reflective and reflective foresight knowledge could improve theory and practice. Originality/value – Contemporary practical foresight activities are analysed and suggestions to reduce the gap are developed in the context of the linkage between theory and practice. This paper is thought provoking for futurists, foresight managers and university researchers

    Robot Learning and Execution of Collaborative Manipulation Plans from YouTube Cooking Videos

    Full text link
    People often watch videos on the web to learn how to cook new recipes, assemble furniture or repair a computer. We wish to enable robots with the very same capability. This is challenging; there is a large variation in manipulation actions and some videos even involve multiple persons, who collaborate by sharing and exchanging objects and tools. Furthermore, the learned representations need to be general enough to be transferable to robotic systems. On the other hand, previous work has shown that the space of human manipulation actions has a linguistic, hierarchical structure that relates actions to manipulated objects and tools. Building upon this theory of language for action, we propose a framework for understanding and executing demonstrated action sequences from full-length, unconstrained cooking videos on the web. The framework takes as input a cooking video annotated with object labels and bounding boxes, and outputs a collaborative manipulation action plan for one or more robotic arms. We demonstrate performance of the system in a standardized dataset of 100 YouTube cooking videos, as well as in three full-length Youtube videos that include collaborative actions between two participants. We additionally propose an open-source platform for executing the learned plans in a simulation environment as well as with an actual robotic arm

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Empire, Hegemony, and Leadership: Developing a Research Framework for the Study of Regional Powers

    Get PDF
    Regional powers are often conceived of as “regional leading powers,” states which adopt a cooperative and benevolent attitude in their international relations with their neighbors. The paper argues that regional powers can follow a much wider range of foreign policy strategies in their region. Three ideal-typical regional strategies are identified: empire, hegemony, and leadership. The paper is devoted to a theory-led distinction and clarification of these three terms, which are often used interchangeably in the field of international relations. According to the goals pursued, to the means employed, and to other discriminating features such as the degree of legitimation and the type of self-representation by the dominant state, the paper outlines the essential traits of imperial, hegemonic, and leading strategies and identifies subtypes for better classifying hegemony and leadership.regional powers, empire, hegemony, leadership, strategy

    Versatile Multilinked Aerial Robot with Tilting Propellers: Design, Modeling, Control and State Estimation for Autonomous Flight and Manipulation

    Full text link
    Multilinked aerial robot is one of the state-of-the-art works in aerial robotics, which demonstrates the deformability benefiting both maneuvering and manipulation. However, the performance in outdoor physical world has not yet been evaluated because of the weakness in the controllability and the lack of the state estimation for autonomous flight. Thus we adopt tilting propellers to enhance the controllability. The related design, modeling and control method are developed in this work to enable the stable hovering and deformation. Furthermore, the state estimation which involves the time synchronization between sensors and the multilinked kinematics is also presented in this work to enable the fully autonomous flight in the outdoor environment. Various autonomous outdoor experiments, including the fast maneuvering for interception with target, object grasping for delivery, and blanket manipulation for firefighting are performed to evaluate the feasibility and versatility of the proposed robot platform. To the best of our knowledge, this is the first study for the multilinked aerial robot to achieve the fully autonomous flight and the manipulation task in outdoor environment. We also applied our platform in all challenges of the 2020 Mohammed Bin Zayed International Robotics Competition, and ranked third place in Challenge 1 and sixth place in Challenge 3 internationally, demonstrating the reliable flight performance in the fields

    Learning for a robot:deep reinforcement learning, imitation learning, transfer learning

    Get PDF
    Dexterous manipulation of the robot is an important part of realizing intelligence, but manipulators can only perform simple tasks such as sorting and packing in a structured environment. In view of the existing problem, this paper presents a state-of-the-art survey on an intelligent robot with the capability of autonomous deciding and learning. The paper first reviews the main achievements and research of the robot, which were mainly based on the breakthrough of automatic control and hardware in mechanics. With the evolution of artificial intelligence, many pieces of research have made further progresses in adaptive and robust control. The survey reveals that the latest research in deep learning and reinforcement learning has paved the way for highly complex tasks to be performed by robots. Furthermore, deep reinforcement learning, imitation learning, and transfer learning in robot control are discussed in detail. Finally, major achievements based on these methods are summarized and analyzed thoroughly, and future research challenges are proposed

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work

    Brave new creatures : a comparative study of Mary Shelley's Frankenstein and the creatures of the new millenium

    Get PDF
    This thesis intends to analyse Mary Shelley‘s creature in her novel Frankenstein, and how the creation of this creature may have adumbrated the birth of present creatures—clones, genomes,1 Artificial Intelligence (AI) creatures like robots and androids—that spring from the latest technological and scientific advances. The Promethean ambition to play God in order to create life persists, and it is present today more than ever before. Within the frame of Cultural Studies and Intertextuality, I dwell upon the similarities and the differences between Mary Shelley´s creature and these ―brave new creatures.‖ Mary Shelley´s Frankenstein was provided with spiritual life and human characteristics such as suffering for love, neglect, and scorn, but the idea of the human as matter was already present in Shelley´s novel: Frankenstein was an ensemble of pieces of corpses. In this thesis I explore to which extent and how the creatures of the new millennium depart from or are similar to the original creature Frankenstein. In Brave New World (1932) Aldous Huxley had already speculated about genetic engineering, test tube babies, and a materialistic conception of human life. Today science and technology challenge us with a future new human race as the cases presented in this study. In view of all this, to ponder what the future may bring about is worth a try
    corecore