14,209 research outputs found

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    Gate-Level Simulation of Quantum Circuits

    Get PDF
    While thousands of experimental physicists and chemists are currently trying to build scalable quantum computers, it appears that simulation of quantum computation will be at least as critical as circuit simulation in classical VLSI design. However, since the work of Richard Feynman in the early 1980s little progress was made in practical quantum simulation. Most researchers focused on polynomial-time simulation of restricted types of quantum circuits that fall short of the full power of quantum computation. Simulating quantum computing devices and useful quantum algorithms on classical hardware now requires excessive computational resources, making many important simulation tasks infeasible. In this work we propose a new technique for gate-level simulation of quantum circuits which greatly reduces the difficulty and cost of such simulations. The proposed technique is implemented in a simulation tool called the Quantum Information Decision Diagram (QuIDD) and evaluated by simulating Grover's quantum search algorithm. The back-end of our package, QuIDD Pro, is based on Binary Decision Diagrams, well-known for their ability to efficiently represent many seemingly intractable combinatorial structures. This reliance on a well-established area of research allows us to take advantage of existing software for BDD manipulation and achieve unparalleled empirical results for quantum simulation

    Transient Reward Approximation for Continuous-Time Markov Chains

    Full text link
    We are interested in the analysis of very large continuous-time Markov chains (CTMCs) with many distinct rates. Such models arise naturally in the context of reliability analysis, e.g., of computer network performability analysis, of power grids, of computer virus vulnerability, and in the study of crowd dynamics. We use abstraction techniques together with novel algorithms for the computation of bounds on the expected final and accumulated rewards in continuous-time Markov decision processes (CTMDPs). These ingredients are combined in a partly symbolic and partly explicit (symblicit) analysis approach. In particular, we circumvent the use of multi-terminal decision diagrams, because the latter do not work well if facing a large number of different rates. We demonstrate the practical applicability and efficiency of the approach on two case studies.Comment: Accepted for publication in IEEE Transactions on Reliabilit

    Partially-shared zero-suppressed multi-terminal BDDs: concept, algorithms and applications

    Get PDF
    Multi-Terminal Binary Decision Diagrams (MTBDDs) are a well accepted technique for the state graph (SG) based quantitative analysis of large and complex systems specified by means of high-level model description techniques. However, this type of Decision Diagram (DD) is not always the best choice, since finite functions with small satisfaction sets, and where the fulfilling assignments possess many 0-assigned positions, may yield relatively large MTBDD based representations. Therefore, this article introduces zero-suppressed MTBDDs and proves that they are canonical representations of multi-valued functions on finite input sets. For manipulating DDs of this new type, possibly defined over different sets of function variables, the concept of partially-shared zero-suppressed MTBDDs and respective algorithms are developed. The efficiency of this new approach is demonstrated by comparing it to the well-known standard type of MTBDDs, where both types of DDs have been implemented by us within the C++-based DD-package JINC. The benchmarking takes place in the context of Markovian analysis and probabilistic model checking of systems. In total, the presented work extends existing approaches, since it not only allows one to directly employ (multi-terminal) zero-suppressed DDs in the field of quantitative verification, but also clearly demonstrates their efficienc

    SMTBDD: New Form of BDD for Logic Synthesis

    Get PDF
    The main purpose of the paper is to suggest a new form of BDD – SMTBDD diagram, methods of obtaining, and its basic features. The idea of using SMTBDD diagram in the process of logic synthesis dedicated to FPGA structures is presented. The creation of SMTBDD diagrams is the result of cutting BDD diagram which is the effect of multiple decomposition. The essence of a proposed decomposition method rests on the way of determining the number of necessary ‘g’ bounded functions on the basis of the content of a root table connected with an appropriate SMTBDD diagram. The article presents the methods of searching non-disjoint decomposition using SMTBDD diagrams. Besides, it analyzes the techniques of choosing cutting levels as far as effective technology mapping is concerned. The paper also discusses the results of the experiments which confirm the efficiency of the analyzed decomposition methods

    A New Algorithm for Partitioned Symbolic Reachability Analysis

    Get PDF
    AbstractBinary Decision Diagrams (BDDs) and their multi-terminal extensions have shown to be very helpful for the quantitative verification of systems. Many different approaches have been proposed for deriving symbolic state graph (SG) representations from high-level model descriptions, where compositionality has shown to be crucial for the efficiency of the schemes. Since the symbolic composition schemes deliver the potential SG of a high-level model, one must execute a reachability analysis on the level of the symbolic structures. This step is the main resource of CPU-time and peak memory consumption when it comes to symbolic SG generation. In this work a new operator for zero-suppressed BDDs and their multi-terminal extensions for carrying out (partitioned) symbolic reachability analysis is presented. This algorithm not only replaces standard BDD-based schemes, it even makes symbolic composition as found in contemporary symbolic model checkers such as Prism and Caspa obsolete
    corecore