87,218 research outputs found

    ADO-Tutor: Intelligent Tutoring System for leaning ADO.NET

    Get PDF
    This paper describes an Intelligent Tutoring System for helping users with ADO.NET called ADO-Tutor. The Intelligent Tutoring System was designed and developed using (ITSB) authoring tool for building intelligent educational systems. The user learns through the intelligent tutoring system ADO.NET, the technology used by Microsoft.NET to connect to databases. The material includes lessons, examples, and questions. Through the feedback provided by the intelligent tutoring system, the user's understanding of the material is assessed, and accordingly can be guided to different difficulty level of exercises and/or the lessons. The Intelligent Tutoring System was evaluated by a group of users and the results were more than satisfactory in terms of the quality of the material and the design of the system

    The 'what' and 'how' of learning in design, invited paper

    Get PDF
    Previous experiences hold a wealth of knowledge which we often take for granted and use unknowingly through our every day working lives. In design, those experiences can play a crucial role in the success or failure of a design project, having a great deal of influence on the quality, cost and development time of a product. But how can we empower computer based design systems to acquire this knowledge? How would we use such systems to support design? This paper outlines some of the work which has been carried out in applying and developing Machine Learning techniques to support the design activity; particularly in utilising previous designs and learning the design process

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    The challenge of complexity for cognitive systems

    Get PDF
    Complex cognition addresses research on (a) high-level cognitive processes – mainly problem solving, reasoning, and decision making – and their interaction with more basic processes such as perception, learning, motivation and emotion and (b) cognitive processes which take place in a complex, typically dynamic, environment. Our focus is on AI systems and cognitive models dealing with complexity and on psychological findings which can inspire or challenge cognitive systems research. In this overview we first motivate why we have to go beyond models for rather simple cognitive processes and reductionist experiments. Afterwards, we give a characterization of complexity from our perspective. We introduce the triad of cognitive science methods – analytical, empirical, and engineering methods – which in our opinion have all to be utilized to tackle complex cognition. Afterwards we highlight three aspects of complex cognition – complex problem solving, dynamic decision making, and learning of concepts, skills and strategies. We conclude with some reflections about and challenges for future research

    Design and Development of an Intelligent Tutoring System for C# Language

    Get PDF
    Learning programming is thought to be troublesome. One doable reason why students don’t do well in programming is expounded to the very fact that traditional way of learning within the lecture hall adds more stress on students in understanding the Material rather than applying the Material to a true application. For a few students, this teaching model might not catch their interest. As a result, they'll not offer their best effort to grasp the Material given. Seeing however the information is applied to real issues will increase student interest in learning. As a consequence, this may increase their effort to be taught. In the current paper, we try to help students learn C# programming language using Intelligent Tutoring System. This ITS was developed using ITSB authoring tool to be able to help the student learn programming efficiently and make the learning procedure very pleasing. A knowledge base using ITSB authoring tool style was used to represent the student's work and to give customized feedback and support to students

    Adaptive performance optimization for large-scale traffic control systems

    Get PDF
    In this paper, we study the problem of optimizing (fine-tuning) the design parameters of large-scale traffic control systems that are composed of distinct and mutually interacting modules. This problem usually requires a considerable amount of human effort and time to devote to the successful deployment and operation of traffic control systems due to the lack of an automated well-established systematic approach. We investigate the adaptive fine-tuning algorithm for determining the set of design parameters of two distinct mutually interacting modules of the traffic-responsive urban control (TUC) strategy, i.e., split and cycle, for the large-scale urban road network of the city of Chania, Greece. Simulation results are presented, demonstrating that the network performance in terms of the daily mean speed, which is attained by the proposed adaptive optimization methodology, is significantly better than the original TUC system in the case in which the aforementioned design parameters are manually fine-tuned to virtual perfection by the system operators

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions
    corecore