617,340 research outputs found

    Local loops and micro-mobilities of care : Rethinking care in egalitarian contexts

    Get PDF
    This introduction to the Special Issue Local loops and micro-mobilities of care: Rethinking care in egalitarian contexts argues for the importance of analysing local organizations of care. This is a necessary addition to current scholarship which has focused on the globalization of care. Yet, in many parts of the world, such as the Northern and Eastern European countries, on which this issue focuses, care provision continues to be mainly local and migrant care workers are complementary. Nevertheless, the daily organization of care can be as complex as in the global care chains. To address this local complexity, we propose two concepts: the notion of local care loops and care as patchwork. The concept of local care loops is a sensitizing one that emphasizes routine, daily practices and micro-mobilities of care that create loops around daily practices of care. Patchwork refers to practices that are simultaneously routinized activities but that are also changing from day to day, depending on the available resources and constraints (of time, money, and caregivers), as well as the local geographies and distances that need to be connected in the loops. The introduction also presents the six articles that make up this Special Issue. The articles identify similarities and differences in processes related to the commodification of childcare and transforming gender ideologies in post-socialist and social-democratic welfare societies.Non peer reviewe

    A metamodel based optimisation algorithm for metal forming processes

    Get PDF
    Cost saving and product improvement have always been important goals in the metal\ud forming industry. To achieve these goals, metal forming processes need to be optimised. During\ud the last decades, simulation software based on the Finite Element Method (FEM) has significantly\ud contributed to designing feasible processes more easily. More recently, the possibility of\ud coupling FEM to mathematical optimisation algorithms is offering a very promising opportunity\ud to design optimal metal forming processes instead of only feasible ones. However, which\ud optimisation algorithm to use is still not clear.\ud In this paper, an optimisation algorithm based on metamodelling techniques is proposed\ud for optimising metal forming processes. The algorithm incorporates nonlinear FEM simulations\ud which can be very time consuming to execute. As an illustration of its capabilities, the\ud proposed algorithm is applied to optimise the internal pressure and axial feeding load paths\ud of a hydroforming process. The product formed by the optimised process outperforms products\ud produced by other, arbitrarily selected load paths. These results indicate the high potential of\ud the proposed algorithm for optimising metal forming processes using time consuming FEM\ud simulations

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - I: Dynamical Synchronization and Generalized Inertial Effects

    Get PDF
    This is the first of a couple of papers in which, by exploiting the capabilities of the Hamiltonian approach to general relativity, we get a number of technical achievements that are instrumental both for a disclosure of \emph{new} results concerning specific issues, and for new insights about \emph{old} foundational problems of the theory. The first paper includes: 1) a critical analysis of the various concepts of symmetry related to the Einstein-Hilbert Lagrangian viewpoint on the one hand, and to the Hamiltonian viewpoint, on the other. This analysis leads, in particular, to a re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose the (nearly unknown) connection of a subgroup of them to Hamiltonian gauge transformations {\it on-shell}; 2) a re-visitation of the canonical reduction of the ADM formulation of general relativity, with particular emphasis on the geometro-dynamical effects of the gauge-fixing procedure, which amounts to the definition of a \emph{global (non-inertial) space-time laboratory}. This analysis discloses the peculiar \emph{dynamical nature} that the traditional definition of distant simultaneity and clock-synchronization assume in general relativity, as well as the {\it gauge relatedness} of the "conventions" which generalize the classical Einstein's convention.Comment: 45 pages, Revtex4, some refinements adde

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - II: Dirac versus Bergmann observables and the Objectivity of Space-Time

    Get PDF
    (abridged)The achievements of the present work include: a) A clarification of the multiple definition given by Bergmann of the concept of {\it (Bergmann) observable. This clarification leads to the proposal of a {\it main conjecture} asserting the existence of i) special Dirac's observables which are also Bergmann's observables, ii) gauge variables that are coordinate independent (namely they behave like the tetradic scalar fields of the Newman-Penrose formalism). b) The analysis of the so-called {\it Hole} phenomenology in strict connection with the Hamiltonian treatment of the initial value problem in metric gravity for the class of Christoudoulou -Klainermann space-times, in which the temporal evolution is ruled by the {\it weak} ADM energy. It is crucial the re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose their (nearly unknown) connection to gauge transformations on-shell; this is expounded in the first paper (gr-qc/0403081). The use of the Bergmann-Komar {\it intrinsic pseudo-coordinates} allows to construct a {\it physical atlas} of 4-coordinate systems for the 4-dimensional {\it mathematical} manifold, in terms of the highly non-local degrees of freedom of the gravitational field (its four independent {\it Dirac observables}), and to realize the {\it physical individuation} of the points of space-time as {\it point-events} as a gauge-fixing problem, also associating a non-commutative structure to each 4-coordinate system.Comment: 41 pages, Revtex

    Properties of recoverable region and semi-global stabilization in recoverable region for linear systems subject to constraints

    Get PDF
    This paper investigates time-invariant linear systems subject to input and state constraints. It is shown that the recoverable region (which is the largest domain of attraction that is theoretically achievable) can be semiglobally stabilized by continuous nonlinear feedbacks while satisfying the constraints. Moreover, a reduction technique is presented which shows, when trying to compute the recoverable region, that we only need to compute the recoverable region for a system of lower dimension which generally leads to a considerable simplification in the computational effort
    • …
    corecore