357 research outputs found

    Silent Speech Interfaces for Speech Restoration: A Review

    Get PDF
    This work was supported in part by the Agencia Estatal de Investigacion (AEI) under Grant PID2019-108040RB-C22/AEI/10.13039/501100011033. The work of Jose A. Gonzalez-Lopez was supported in part by the Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship (IJCI-2017-32926).This review summarises the status of silent speech interface (SSI) research. SSIs rely on non-acoustic biosignals generated by the human body during speech production to enable communication whenever normal verbal communication is not possible or not desirable. In this review, we focus on the first case and present latest SSI research aimed at providing new alternative and augmentative communication methods for persons with severe speech disorders. SSIs can employ a variety of biosignals to enable silent communication, such as electrophysiological recordings of neural activity, electromyographic (EMG) recordings of vocal tract movements or the direct tracking of articulator movements using imaging techniques. Depending on the disorder, some sensing techniques may be better suited than others to capture speech-related information. For instance, EMG and imaging techniques are well suited for laryngectomised patients, whose vocal tract remains almost intact but are unable to speak after the removal of the vocal folds, but fail for severely paralysed individuals. From the biosignals, SSIs decode the intended message, using automatic speech recognition or speech synthesis algorithms. Despite considerable advances in recent years, most present-day SSIs have only been validated in laboratory settings for healthy users. Thus, as discussed in this paper, a number of challenges remain to be addressed in future research before SSIs can be promoted to real-world applications. If these issues can be addressed successfully, future SSIs will improve the lives of persons with severe speech impairments by restoring their communication capabilities.Agencia Estatal de Investigacion (AEI) PID2019-108040RB-C22/AEI/10.13039/501100011033Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship IJCI-2017-3292

    Bimodal Emotion Recognition using Speech and Physiological Changes

    Get PDF
    With exponentially evolving technology it is no exaggeration to say that any interface fo

    A Study of recent classification algorithms and a novel approach for biosignal data classification

    Get PDF
    Analyzing and understanding human biosignals have been important research areas that have many practical applications in everyday life. For example, Brain Computer Interface is a research area that studies the connection between the human brain and external systems by processing and learning the brain signals called Electroencephalography (EEG) signals. Similarly, various assistive robotics applications are being developed to interpret eye or muscle signals in humans in order to provide control inputs for external devices. The efficiency for all of these applications depends heavily on being able to process and classify human biosignals. Therefore many techniques from Signal Processing and Machine Learning fields are applied in order to understand human biosignals better and increase the efficiency and success of these applications. This thesis proposes a new classifier for biosignal data classification utilizing Particle Swarm Optimization Clustering and Radial Basis Function Networks (RBFN). The performance of the proposed classifier together with several variations in the technique is analyzed by utilizing comparisons with the state of the art classifiers such as Fuzzy Functions Support Vector Machines (FFSVM), Improved Fuzzy Functions Support Vector Machines (IFFSVM). These classifiers are implemented on the classification of same biological signals in order to evaluate the proposed technique. Several clustering algorithms, which are used in these classifiers, such as K-means, Fuzzy c-means, and Particle Swarm Optimization (PSO), are studied and compared with each other based on clustering abilities. The effects of the analyzed clustering algorithms in the performance of Radial Basis Functions Networks classifier are investigated. Strengths and weaknesses are analyzed on various standard and EEG datasets. Results show that the proposed classifier that combines PSO clustering with RBFN classifier can reach or exceed the performance of these state of the art classifiers. Finally, the proposed classification technique is applied to a real-time system application where a mobile robot is controlled based on person\u27s EEG signal

    A survey of wearable biometric recognition systems

    Get PDF
    The growing popularity of wearable devices is leading to new ways to interact with the environment, with other smart devices, and with other people. Wearables equipped with an array of sensors are able to capture the owner's physiological and behavioural traits, thus are well suited for biometric authentication to control other devices or access digital services. However, wearable biometrics have substantial differences from traditional biometrics for computer systems, such as fingerprints, eye features, or voice. In this article, we discuss these differences and analyse how researchers are approaching the wearable biometrics field. We review and provide a categorization of wearable sensors useful for capturing biometric signals. We analyse the computational cost of the different signal processing techniques, an important practical factor in constrained devices such as wearables. Finally, we review and classify the most recent proposals in the field of wearable biometrics in terms of the structure of the biometric system proposed, their experimental setup, and their results. We also present a critique of experimental issues such as evaluation and feasibility aspects, and offer some final thoughts on research directions that need attention in future work.This work was partially supported by the MINECO grant TIN2013-46469-R (SPINY) and the CAM Grant S2013/ICE-3095 (CIBERDINE
    corecore