332 research outputs found

    Distributed Holistic Clustering on Linked Data

    Full text link
    Link discovery is an active field of research to support data integration in the Web of Data. Due to the huge size and number of available data sources, efficient and effective link discovery is a very challenging task. Common pairwise link discovery approaches do not scale to many sources with very large entity sets. We here propose a distributed holistic approach to link many data sources based on a clustering of entities that represent the same real-world object. Our clustering approach provides a compact and fused representation of entities, and can identify errors in existing links as well as many new links. We support a distributed execution of the clustering approach to achieve faster execution times and scalability for large real-world data sets. We provide a novel gold standard for multi-source clustering, and evaluate our methods with respect to effectiveness and efficiency for large data sets from the geographic and music domains

    On the Solution of Linear Programming Problems in the Age of Big Data

    Full text link
    The Big Data phenomenon has spawned large-scale linear programming problems. In many cases, these problems are non-stationary. In this paper, we describe a new scalable algorithm called NSLP for solving high-dimensional, non-stationary linear programming problems on modern cluster computing systems. The algorithm consists of two phases: Quest and Targeting. The Quest phase calculates a solution of the system of inequalities defining the constraint system of the linear programming problem under the condition of dynamic changes in input data. To this end, the apparatus of Fejer mappings is used. The Targeting phase forms a special system of points having the shape of an n-dimensional axisymmetric cross. The cross moves in the n-dimensional space in such a way that the solution of the linear programming problem is located all the time in an "-vicinity of the central point of the cross.Comment: Parallel Computational Technologies - 11th International Conference, PCT 2017, Kazan, Russia, April 3-7, 2017, Proceedings (to be published in Communications in Computer and Information Science, vol. 753

    Category Theory and Model-Driven Engineering: From Formal Semantics to Design Patterns and Beyond

    Full text link
    There is a hidden intrigue in the title. CT is one of the most abstract mathematical disciplines, sometimes nicknamed "abstract nonsense". MDE is a recent trend in software development, industrially supported by standards, tools, and the status of a new "silver bullet". Surprisingly, categorical patterns turn out to be directly applicable to mathematical modeling of structures appearing in everyday MDE practice. Model merging, transformation, synchronization, and other important model management scenarios can be seen as executions of categorical specifications. Moreover, the paper aims to elucidate a claim that relationships between CT and MDE are more complex and richer than is normally assumed for "applied mathematics". CT provides a toolbox of design patterns and structural principles of real practical value for MDE. We will present examples of how an elementary categorical arrangement of a model management scenario reveals deficiencies in the architecture of modern tools automating the scenario.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Process Mining-Based Customer Journey Analytics

    Get PDF
    • 

    corecore