228 research outputs found

    Analysis and representation of test cases generated from LOTOS

    Get PDF
    Cataloged from PDF version of article.This paper presents a method to generate, analyse and represent test cases from protocol specification. The language of temporal ordering specification (LOTOS) is mapped into an extended finite state machine (EFSM). Test cases are generated from EFSM. The generated test cases are modelled as a dependence graph. Predicate slices are used to identify infeasible test cases that must be eliminated. Redundant assignments and predicates in all the feasible test cases are removed by reducing the test case dependence graph. The reduced test case dependence graph is adapted for a local single-layer (LS) architecture. The reduced test cases for the LS architecture are enhanced to represent the tester's behaviour. The dynamic behaviour of the test cases is represented in the form of control graphs by inverting the events, assigning verdicts to the events in the enhanced dependence graph. © 1995

    Testing Transition Systems: An Annotated Bibliography

    Get PDF

    Viroids : minimal genetic systems : (RNA, plant pathogens, replication, pathogenesis)

    Get PDF
    SViroids are nucleic acid species of relatively low molecular weight and unique structure that cause several important diseases of cultivated plants. Viroids are the smallest known agents of infectious disease. Unlike viral nucleic acids, viroids are not encapsidated. Despite their small size, viroids replicate autonomously in cells of susceptible plant species. Known viroids are single stranded, covalently closed circular, as well as linear, RNA molecules with extensive regions of intramolecular complementarity; they exist in their native state as highly base pairedrods. The biological properties of viroids are determined by their primary structures; viroids thus constitute genetic systems of minimal complexity.T. O. DIENER, Plant Virology Laboratory, Plant Protection Institute, Science and Education Administration, U.S. Department of Agriculture, Beltsville, MD

    CIP Annual Report 1981

    No full text

    Working Together on Groundnut Virus Diseases Summary and recommendations of a meeting of international working groups on groundnut virus diseases 15-19 Aug 1993

    Get PDF
    At a meeting organized by ICRISAT in cooperation wi t h the Peanut Collaborative Research Support Program (Peanut CRSP) and the Virology Department , Scottish Crop Research Institute (SCRI), UK, scientists f rom 11 countries, representing the three working groups—'Groundnut viruses in Asia-Pacific region', 'Groundnut viruses in Af r ica' , and 'Transformation and regeneration of groundnut, and utilization of viral genes to induce resistance to virus diseases'—reviewed the progress made by the three working groups since their last meetings. Following general discussion, recommendations were made for global cooperative research on groundnut viruses, and specific recommendations for collaborative research were listed for each working group

    CIP Annual Report 1980

    Get PDF

    Changing the ligand-binding specificity of E. coli periplasmic binding protein RbsB by rational design and screening

    Get PDF
    Periplasmic binding proteins (PBPs) form a superfamily of bacterial proteins with a conserved bilobal structure, which are involved in substrate scavenging for bacterial cells. A wide variety of natural ligand-binding domains has evolved. PBPs are composed of two domains connected by a hinge region, which form a binding pocket between the two domains. They can be found in two stable conformations; in absence of ligand the PBP adopts an open conformation, where the binding pocket is exposed. In presence of the ligand, the protein changes to the closed conformation where the ligand is buried in the middle of the protein. This project focused on the ribose-binding protein of Escherichia coli (RbsB). Ribose binding to RbsB stabilizes the closed state. RbsB-bound ribose is presented to a cytoplasmic transport channels (RbsAC), from where it is imported into the cell, or interacts to membrane receptors (i.e., Trg) and can elicit a chemotactic signal. Due to their unique ligand-binding characteristics and wide variety of natural binding pockets PBPs have been of interest for the development of biosensors and bioreporter systems. PBP bioreporters were initiated over 20 years ago by a development in the group of Hazelbauer, who fused the C-terminal part of the E. coli EnvZ osmoregulation histidine kinase to the N-terminal part of the Trg methyl-accepting chemotaxis receptor protein, creating a hybrid receptor Trz1. Ligand bound galactose-binding protein (GBP) and ribose-bound RbsB interact with Trz1, which eventually leads to phosphorylation of the response regulator OmpR, activating transcription from the ompC promotor (and any reporter gene fused to this). In 2003, Hellinga’s group proposed that based on crystal structure information of ligand-bound PBPs variants with new ligand recognition specificities could be designed by computational approaches. Notably, they claimed the design of a RbsB-variant with nM affinity for recognition of 2,4,6-trinitrotoluene (TNT). This idea inspired the scientific community, because it could easily extend PBP-binding to a tremendous variety of compounds, including non- natural molecules, and would thus permit a wide variety of biosensor and bioreporter systems based on RbsB/GBP and Trz1. Unfortunately, independent engineering of some of the most promising published mutants failed to reproduce the reported in vivo and in vitro results. These studies further concluded that the published variants were actually misfolded proteins and/or impaired in stability as result of the introduced ligand-pocket mutations. This fact was largely ignored by Hellinga’s publications. Still inspired by the concept and trying to understand the reason of such limited success, our group raised the hypothesis that changing from ribose to TNT in a single step was likely unfeasible, but given the wide range of naturally evolved PBP ligand binding pockets, a step by step change of ribose binding to a non-natural analogue should be possible. To test this, we selected compounds with distinct differences but still chemically similar to ribose: 1,3-cyclohexanediol (13CHD) and cyclohexanol (CH). Mutant ligand binding pockets that might accommodate 13CHD and/or CH were computationally simulated and calculated using Rosetta, from which a list of critical amino acid residues to mutate in RbsB was selected. These were then synthesized and cloned into E. coli; a resulting set of 2 million mutants containing one of five possible substitutions at each of 9 selected critical amino acid positions. The library was introduced into an E. coli bioreporter strain, which carries the Trz1 hybrid signaling pathway coupled to GFP production when the (new) ligand would bind the (mutant) RbsB. The main goals of this work were to screen and characterize mutants from this first library, and potentially improve mutants for the new ligand binding in further rounds of mutagenesis. In the first part of this work a precise and user-friendly high-throughput strategy to screen the mutant library was developed. Clones were grown as individual microcolonies in alginate beads, to reduce single cell GFP expression variability, which were screened by fluorescence activated cell sorting (FACS) for gain-of-function GFP expression in presence of 13CHD. Six mutants with modest (1.5- fold) but consistent induction with 1 mM 13CHD were isolated. Moreover, these mutants completely lost the capacity to react to ribose. The RbsB mutants were characterized in terms of periplasmic space abundance, stability, secondary structure and ligand affinity. Isothermal microcalorimetry confirmed 13CHD binding, although only two mutants were sufficiently stable upon purification. Circular dichroism and quantification of periplasmic space abundance suggested the mutants to be prone to misfolding and/or defects in translocation. In the second part of this work, we used random and semi-random mutagenesis to improve the affinity and/or stability of the six isolated mutants with 13CHD binding capacity. Several mutant libraries were produced and screened with the previous described strategy. Variants displaying higher expression levels of GFP in presence of 13CHD were collected by FACS, and were used as starting point for the next round of evolution. This mutagenesis and rigorous screening strategy allowed us to isolate 7 mutants with improved (3.2-fold) GFP induction in presence of 13CHD and in a concentration- dependent manner. Several variants were observed that displayed open and closed conformations simultaneously, suggesting they were impaired in transition dynamics. Moreover, our screening strategy largely ignores potential variants with improved binding and closed conformation stability, but that are unable to interact with Trz1 receptor (e.i., trigger the signaling cascade). Finally in the third part of this work, we developed and tested an in vivo system to characterize the quality of the translocation process and receptor interactions. Wild-type- and mutant-RbsB proteins were fused to mCherry reporter protein to study protein abundance and subcellular localization. Whereas RbsB-mCherry proteins clearly localized to the periplasmic space and centered in polar regions depending on chemoreceptor availability, mutant-RbsB-mCherry expression resulted in high proportions of cells devoid of clear foci and low proportions of cells with multiple fluorescent foci, suggesting poorer translocation and mislocalisation. In addition, polar foci of mutants were less fluorescent, suggesting poorer chemoreceptor binding. By spiking further derivative mutant libraries generated by error-prone PCR without or with different proportions of E. coli expressing wild-type RbsB-mCherry we could estimate the potential improvement and deterioration of mutants with wild- type-like periplasmic localisation. The in vivo translocation system may thus be used to detect mutants with better signal transduction capacity. In conclusion, we firmly showed that design of PBP receptor proteins with new binding capacities for non-natural compounds is feasible, but still largely a matter of trial and error. The combination of computational simulations, random mutagenesis and rigorous screening allowed us to isolate variants with new recognition for 13CHD and loss of ribose binding. However, our results also showed that most predicted ligand-binding pocket mutations lead to poorly folding and functioning proteins, and it is likely that the dynamic transition needed between open and closed conformations of (here) RbsB is insufficiently understood and currently predictable to allow rational expansion to a wide range of new ligands. -- Les protĂ©ines de liaison pĂ©riplasmiques (PLP) constituent une superfamille de protĂ©ines bactĂ©riennes avec une structure bilobĂ©e. Elles sont impliquĂ©es dans la captation de substrats pour les cellules bactĂ©riennes, et montrent grande diversitĂ© de domaines de liaison Ă  des composĂ©s naturels. Les PLP sont composĂ©es de deux domaines connectĂ©s par une rĂ©gion charniĂšre, ce qui forme une poche de liaison au substrat entre les deux domaines. Les PLP montrent deux Ă©tats stables : ouverte en l’absence de ligand, conformation dans laquelle la poche de liaison est exposĂ©e, et fermĂ©e quand le ligand est sĂ©questrĂ© dans la poche de liaison. Ce projet a portĂ© sur l’étude de la PLP RbsB liant le ribose chez Escherichia coli. La liaison du ribose stabilise l’état fermĂ© de RbsB et permet l’interaction avec le transporteur cytoplasmique RbsAC et son passage dans le cytoplasme de la cellule, ou son interaction avec des rĂ©cepteurs membranaires tels que Trg permettant en une rĂ©ponse chimiotactique. Étant donnĂ©es leurs caractĂ©ristiques uniques de liaison aux ligands et la grande variĂ©tĂ© de poches de liaison naturellement observĂ©e chez les PLP, elles prĂ©sentent un grand intĂ©rĂȘt pour le dĂ©veloppement de biosenseurs et de systĂšmes biorapporteurs. Les premiers biorapporteurs basĂ©s sur des PLP ont Ă©tĂ© dĂ©veloppĂ©s 20 ans auparavant par le groupe de Hazelbauer. Cette Ă©quipe a fusionnĂ© la partie C-terminale de la protĂ©ine kinase Ă  histidine impliquĂ©e dans l’osmorĂ©gulation (EnvZ) et l’extrĂ©mitĂ© N-terminale du rĂ©cepteur chimiotactique accepteur de groupement mĂ©thyle (Trg), pour crĂ©er le rĂ©cepteur hybride Trz1. Les PLP liant le galactose (GBP) et le ribose (RbsB) interagissent avec Trz1, ce qui entraine la phosphorylation du rĂ©gulateur rĂ©ponse OmpR qui lui-mĂȘme va activer la transcription Ă  partir du promoteur du gĂšne ompC (ou n’importe quel systĂšme rapporteur placĂ© en aval de ce promoteur). En 2003, le groupe de Hellinga proposait que, sur la base de la structure cristallographique de diffĂ©rents PLP liĂ©es Ă  leur ligand, des variants reconnaissant de nouveaux ligands pourraient ĂȘtre gĂ©nĂ©rĂ©s sur la base d’une approche informatique. En particulier, cette Ă©quipe se targue d’avoir gĂ©nĂ©rer un variant de RbsB permettant de lier le 2,4,6-trinitrotoluĂšne (TNT) avec une affinitĂ© de l’ordre du nanomolaire. Cette idĂ©e a inspirĂ© la communautĂ© scientifique car cette approche pourrait s’étendre Ă  une diversitĂ© incroyable de composĂ©s naturels ou non, ce qui permettrait le dĂ©veloppement de biosenseurs et biorapporteurs variĂ©s basĂ©s sur ce systĂšme. Malheureusement, la construction des mutants les plus prometteurs par des Ă©quipes indĂ©pendantes n’ont pas permis de rapporter de l’activitĂ© in vivo et/ou in vitro. Cela a Ă©tĂ© ignorĂ© dans les publications du groupe Hellinga. InspirĂ©s par ce concept et voulant savoir quelles Ă©taient les raisons de ce succĂšs quelque peu limitĂ©, notre groupe a Ă©mis l’hypothĂšse que le changement de spĂ©cificitĂ© de RbsB du ribose au TNT en une Ă©tape Ă©tait probablement infaisable mais, Ă©tant donnĂ©e la grande diversitĂ© de poches de liaisons naturellement observĂ©es chez les LPL, un changement pas Ă  pas du ribose vers un composĂ© analogue non naturel devrait ĂȘtre possible. Pour tester cela, nous avons sĂ©lectionnĂ© des composĂ©s distincts du ribose mais prĂ©sentant tout de mĂȘme des similaritĂ©s : 1,3-cyclohexanediol (13CHD) and cyclohexanol (CH). Des mutants qui pourraient accueillir le 13CHD et/ou CH ont Ă©tĂ© gĂ©nĂ©rĂ©s par simulation informatique en utilisant le programme Rosetta, lequel a fourni une liste d’acides aminĂ©s critiques Ă  muter. Une librairie de mutant a Ă©tĂ© synthĂ©tisĂ©e, celle-ci contenant 2 millions de variants de RbsB avec 1 substition parmi 5 possibles Ă  9 positions sĂ©lectionnĂ©es pour leur aspect critique dans la reconnaissance du substrat. La librairie a Ă©tĂ© introduite et criblĂ©e chez une souche reportrice d’E. coli contenant la chaine de signalisation hybride Trz1 couplĂ©e Ă  la production de la protĂ©ine fluorescente verte (GFP) lorsque le (nouveau) ligand se liera Ă  la protĂ©ine RbsB (sauvage ou mutante). Le but principal de ce travail Ă©tait de caractĂ©riser cette librairie de mutants, et Ă©ventuellement d’amĂ©liorer la capacitĂ© de ces mutants Ă  lier un autre composant par des cycles de mutagĂ©nĂšses additionnels. Dans la premiĂšre partie de ce travail, une stratĂ©gie simple et efficace pour cribler la librairie de mutant a Ă©tĂ© dĂ©veloppĂ©e. Les diffĂ©rents clones/variants ont Ă©tĂ© cultivĂ©s individuellement en microcolonies dans des billes d’alginate afin de rĂ©duire la variabilitĂ© du signal GFP observĂ© au niveau de la cellule unique. Les billes ont Ă©tĂ© analysĂ©es par trieur de cellules reposant sur la fluorescence (FACS) afin de dĂ©tecter des mutants prĂ©sentant une activitĂ© GFP accrue en prĂ©sence de 13CHD. Six mutants ont Ă©tĂ© isolĂ©s pour leur modeste mais significative induction (1,5 fois) en prĂ©sence de 1 mM de 13CHD. De plus, ces mutants avaient totalement perdu leur capacitĂ© Ă  rĂ©agir au ribose. Les mutants RbsB ont Ă©tĂ© caractĂ©risĂ©s plus en dĂ©tails pour leur localisation dans pĂ©riplasme, leur stabilitĂ©, leur abondance et leur affinitĂ© pour le ligand. La technique de microcalorimĂ©trie isotherme a confirmĂ© que ces mutants lient le 13CHD, bien que seulement 2 de ces protĂ©ines mutantes se soient rĂ©vĂ©lĂ©es suffisamment stables aprĂšs purification. L’analyse par dichroĂŻsme circulaire et la quantification de l’abondance des protĂ©ines dans l’espace pĂ©riplasmique suggĂšrent que les protĂ©ines mutantes sont sujettes Ă  un mauvais repliement et/ou un problĂšme dans la translocation du cytoplasme au pĂ©riplasme. Dans une seconde partie, nous avons mutĂ© les six mutants isolĂ©s prĂ©cĂ©demment de façon alĂ©atoire ou semi-alĂ©atoire afin d’amĂ©liorer leur affinitĂ© pour le 13CHD et/ou leur stabilitĂ©. Plusieurs librairies de mutants ont Ă©tĂ© produites et analysĂ©es selon la mĂ©thode dĂ©crite plus tĂŽt. Les variants montrant une plus forte expression du systĂšme rapporteur GFP en prĂ©sence de 13CHD ont Ă©tĂ© isolĂ©s par FACS, et utilisĂ©s comme point de dĂ©part pour la prochaine Ă©tape d’évolution. Cette mutagĂ©nĂšse et l’analyse rigoureuse des librairies nous ont permis d’isoler 7 mutants avec une augmentation de 3,2 fois du signal GFP en prĂ©sence de 13CHD, et d’une façon dose-dĂ©pendante. Plusieurs variants ont montrĂ© qu’ils adoptaient la conformation ouverte et fermĂ©es au sein de la population bactĂ©rienne. Cette derniĂšre observation suggĂšre que ces mutants sont affectĂ©s dans leur capacitĂ© Ă  passer d’une conformation Ă  l’autre. De plus, notre stratĂ©gie de crible ne tient pas compte les variants qui montreraient une liaison accrue et une bonne stabilitĂ© de la conformation fermĂ©e, mais qui seraient incapables d’interagir avec le rĂ©cepteur Trz1 (et donc de dĂ©clencher la cascade de signalisation du rapporteur). Finalement, dans la troisiĂšme partie de ce travail, nous avons dĂ©veloppĂ© et testĂ© un systĂšme in vivo permettant de caractĂ©riser la qualitĂ© du processus de translocation dans l’espace pĂ©riplasmique et l’interaction avec les rĂ©cepteurs. Les protĂ©ines RbsB sauvage et mutantes ont Ă©tĂ© fusionnĂ©es Ă  la protĂ©ine fluorescente rouge mCherry afin de visualiser l’abondance et la localisation sub-cellulaire des protĂ©ines au niveau de la cellule unique en utilisant la microscopy Ă  Ă©pifluorescence et le traitement des images obtenues. Alors que la protĂ©ine de fusion RbsB sauvage montre une localisation pĂ©riplasmique centrĂ©es au niveau des pĂŽles de la cellule dĂ©pendamment de la disponibilitĂ© des chimiorĂ©cepteurs, les fusions avec les variants de RbsB montraient une forte proportion de cellules dĂ©pourvues de foci, et une faible proportion de cellules avec de multiples foci, suggĂ©rant une plus faible liaison aux chimiorĂ©cepteurs. En analysant plus en dĂ©tails des librairies de mutants gĂ©nĂ©rĂ©es par PCR mutagĂšne, en mĂ©langeant ou non avec des cellules contenant la protĂ©ine de fusion RbsB sauvage, nous avons pu estimer l’amĂ©lioration potentielle ou la dĂ©tĂ©rioration des qualitĂ©s des mutants RbsB par rapport au sauvage en terme de localisation pĂ©riplasmique. Ce systĂšme de translocation in vivo pourrait ĂȘtre utilisĂ© afin de dĂ©tecter des mutants permettant une meilleure transduction du signal. En conclusion, nous avons montrĂ© que la conception de protĂ©ines rĂ©ceptrices PLP prĂ©sentant de nouvelles capacitĂ©s de liaison pour des composĂ©s non naturels est bien faisable, mais repose encore sur une stratĂ©gie d’essais et erreurs. La combinaison de simulations informatiques, de mutagĂ©nĂšses alĂ©atoires et de crible rigoureux nous a permis d’isoler des variants de RbsB avec une capacitĂ© Ă  reconnaitre le 13CHD, tout en ne liant plus le ribose. NĂ©anmoins, nos rĂ©sultats ont Ă©galement montrĂ© que la plupart des prĂ©dictions de mutations au niveau de la poche de liaison ont menĂ© Ă  un mauvais repliement ou fonctionnement des protĂ©ines. Il est trĂšs probable que la dynamique de transition entre la conformation ouverte et fermĂ©e (de RbsB pour cette Ă©tude) ne soit pas encore assez bien comprise, et donc actuellement non prĂ©dictable pour permettre le test d’une grande variĂ©tĂ© de nouveaux ligands

    Molecular Cloning of Sugarcane Mosaic Virus Complementary-Dna: Use as a Probe for the Detection of Virus Infection and Viral-Rnas.

    Get PDF
    DNA complementary (cDNA) to the RNA genome of sugarcane mosaic virus strain H (SCMV-H) was synthesized using avian myeloblastosis virus reverse transcriptase and oligo(dT) as primer. Second strand synthesis used the same enzyme and oligo(dG) primer after tailing the first strand with oligo(dC). Double-stranded cDNA was inserted into the PstI site of plasmid pBR322 by the G-C tailing method and cloned in Esherichia coli HB101. Twenty recombinant clones containing SCMV-H sequences were obtained, but most had inserts less than 500 base pairs (0.5 kbp). Two plasmids, S47-6 and S47-20, however, had larger inserts of 1.2 kbp and 2.7 kbp, respectively and were used for further study. These two plasmids had some SCMV-H sequences in common, but did not share any BamHI, EcoRI, HindIII, PstI, or SalI restriction sites. Dot blot hybridization, which involves spotting crude plant extracts on nitrocellulose filters and hybridizing with (\u2732)P-labeled recombinant S47-6 or S47-20 plasmid DNA, proved to be a rapid and sensitive method for detecting SCMV-H infection. Sap from SCMV-infected plants diluted 1/1000 to 1/3000 gave detectable hybridization signals as did 15 to 40 pg purified viral RNA. Dot blot hybridization also revealed that SCMV strain I, but not SCMV strains A, B, D, M, and J, has sequences in common with the strain H-derived clones. Northern hybridization of single-stranded RNA from SCMV-infected tissue showed that, besides genomic RNA, a series of smaller RNAs with sizes of 7.9, 6.6, 4.7, 2.8, 1.5, 1.2, 0.9, and 0.7 kb hybridized to the probe. No discrete viral double-stranded RNA species were found. Serologically specific electron microscopy of plant extracts was used to demonstrate a series of discrete less-than-full-length virus particles, two of which correlate with the 7.9 and 6.6 kb RNAs
    • 

    corecore