121 research outputs found

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015

    Scheduling Real-Time Jobs in Distributed Systems - Simulation and Performance Analysis

    Get PDF
    Proceedings of: First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto (Portugal), August 27-28, 2014.One of the major challenges in ultrascale systems is the effective scheduling of complex jobs within strict timing constraints. The distributed and heterogeneous system resources constitute another critical issue that must be addressed by the employed scheduling strategy. In this paper, we investigate by simulation the performance of various policies for the scheduling of real-time directed acyclic graphs in a heterogeneous distributed environment. We apply bin packing techniques during the processor selection phase of the scheduling process, in order to utilize schedule gaps and thus enhance existing list scheduling methods. The simulation results show that the proposed policies outperform all of the other examined algorithms.The work presented in this paper has been partially supported by EU under the COST program Action IC1305, “Network for Sustainable Ultrascale Computing (NESUS)”

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Direct NN-body code on low-power embedded ARM GPUs

    Full text link
    This work arises on the environment of the ExaNeSt project aiming at design and development of an exascale ready supercomputer with low energy consumption profile but able to support the most demanding scientific and technical applications. The ExaNeSt compute unit consists of densely-packed low-power 64-bit ARM processors, embedded within Xilinx FPGA SoCs. SoC boards are heterogeneous architecture where computing power is supplied both by CPUs and GPUs, and are emerging as a possible low-power and low-cost alternative to clusters based on traditional CPUs. A state-of-the-art direct NN-body code suitable for astrophysical simulations has been re-engineered in order to exploit SoC heterogeneous platforms based on ARM CPUs and embedded GPUs. Performance tests show that embedded GPUs can be effectively used to accelerate real-life scientific calculations, and that are promising also because of their energy efficiency, which is a crucial design in future exascale platforms.Comment: 16 pages, 7 figures, 1 table, accepted for publication in the Computing Conference 2019 proceeding

    Performance and energy-efficient implementation of a smart city application on FPGAs

    Get PDF
    The continuous growth of modern cities and the request for better quality of life, coupled with the increased availability of computing resources, lead to an increased attention to smart city services. Smart cities promise to deliver a better life to their inhabitants while simultaneously reducing resource requirements and pollution. They are thus perceived as a key enabler to sustainable growth. Out of many other issues, one of the major concerns for most cities in the world is traffic, which leads to a huge waste of time and energy, and to increased pollution. To optimize traffic in cities, one of the first steps is to get accurate information in real time about the traffic flows in the city. This can be achieved through the application of automated video analytics to the video streams provided by a set of cameras distributed throughout the city. Image sequence processing can be performed both peripherally and centrally. In this paper, we argue that, since centralized processing has several advantages in terms of availability, maintainability and cost, it is a very promising strategy to enable effective traffic management even in large cities. However, the computational costs are enormous, and thus require an energy-efficient High-Performance Computing approach. Field Programmable Gate Arrays (FPGAs) provide comparable computational resources to CPUs and GPUs, yet require much lower amounts of energy per operation (around 6 × and 10 × for the application considered in this case study). They are thus preferred resources to reduce both energy supply and cooling costs in the huge datacenters that will be needed by Smart Cities. In this paper, we describe efficient implementations of high-performance algorithms that can process traffic camera image sequences to provide traffic flow information in real-time at a low energy and power cost

    HPS-HDS:High Performance Scheduling for Heterogeneous Distributed Systems

    Get PDF
    Heterogeneous Distributed Systems (HDS) are often characterized by a variety of resources that may or may not be coupled with specific platforms or environments. Such type of systems are Cluster Computing, Grid Computing, Peer-to-Peer Computing, Cloud Computing and Ubiquitous Computing all involving elements of heterogeneity, having a large variety of tools and software to manage them. As computing and data storage needs grow exponentially in HDS, increasing the size of data centers brings important diseconomies of scale. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance. More, HDS are highly dynamic in its structure, because the user requests must be respected as an agreement rule (SLA) and ensure QoS, so new algorithm for events and tasks scheduling and new methods for resource management should be designed to increase the performance of such systems. In this special issues, the accepted papers address the advance on scheduling algorithms, energy-aware models, self-organizing resource management, data-aware service allocation, Big Data management and processing, performance analysis and optimization
    • 

    corecore