53,451 research outputs found

    Introduction to self-attachment and its neural basis

    Get PDF

    How to encourage empathy from birth: neurological roots and the importance of responsive practice

    Get PDF
    Studies in social neuroscience and brain imaging that have investigated the neural basis of human empathy reveal that the development of empathy is rooted in early infancy, well before the emergence of verbal abilities and more complex capacities in in social understanding (Tousignant, Eugène & Jackson, 2017). The key focus of this article is to demonstrate how experiences and interactions in the earliest months of life impact on neural circuits, overall brain development and, in particular, the development of empathy and altruist motivation in children from birth. Guidance on supporting empathy in early childhood education and care practice through responsive reciprocal relationships is also offered

    A prospective longitudinal study of perceived infant outcomes at 18-24 months: Neural and psychological correlates of parental thoughts and actions assessed during the first month postpartum

    Get PDF
    The first postpartum months constitute a critical period for parents to establish an emotional bond with their infants. Neural responses to infant-related stimuli have been associated with parental sensitivity. However, the associations among these neural responses, parenting, and later infant outcomes for mothers and fathers are unknown. In the current longitudinal study, we investigated the relationships between parental thoughts/actions and neural activation in mothers and fathers in the neonatal period with infant outcomes at the toddler stage. At the first month postpartum, mothers (n=21) and fathers (n=19) underwent a neuroimaging session during which they listened to their own and unfamiliar baby’s cry. Parenting-related thoughts/behaviors were assessed by interview twice at the first month and 3-4 months postpartum and infants’ socioemotional outcomes were reported by mothers and fathers at 18-24 months postpartum. In mothers, higher levels of anxious thoughts/actions about parenting at the first month postpartum, but not at 3-4 months postpartum, were associated with infant’s low socioemotional competencies at 18-24 months. Anxious thoughts/actions were also associated with heightened responses in the motor cortex and reduced responses in the substantia nigra to own infant cry sounds. On the other hand, in fathers, higher levels of positive perception of being a parent at the first month postpartum, but not at 3-4 months postpartum, were associated with higher infant socioemotional competencies at 18-24 months. Positive thoughts were associated with heightened responses in the auditory cortex and caudate to own infant cry sounds. The current study provides evidence that parental thoughts are related to concurrent neural responses to their infants at the first month postpartum as well as their infant’s future socioemotional outcome at 18-24 months. Parent differences suggest that anxious thoughts in mothers and positive thoughts in fathers may be the targets for parenting-focused interventions very early postpartum

    Parental brain: cerebral areas activated by infant cries and faces. A comparison between different populations of parents and not.

    Get PDF
    Literature about parenting traditionally focused on caring behaviors and parental representations. Nowadays, an innovative line of research, interested in evaluating the neural areas and hormones implicated in the nurturing and caregiving responses, has developed. The only way to permit a newborn to survive and grow up is to respond to his needs and in order to succeed it is necessary, \ufb01rst of all, that the adults around him understand what his needs are. That is why adults\u2019 capacity of taking care of infants cannot disregard from some biological mechanisms, which allow them to be more responsive to the progeny and to infants in general. Many researches have proved that exist speci\ufb01c neural basis activating in response to infant evolutionary stimuli, such as infant cries and infant emotional facial expression. There is a sort of innate predisposition in human adults to respond to infants\u2019 signals, in order to satisfy their need and allow them to survive and become young adults capable of taking care of themselves. This article focuses on research that has investigated, in the last decade, the neural circuits underlying parental behavioral responses. Moreover, the paper compares the results of those studies that investigated the neural responses to infant stimuli under different conditions: familiar versus unknown children, parents versus non-parents and normative versus clinical samples (depression, addiction, adolescence, and PTSD)

    Theories of the development of human communication

    Get PDF
    This article considers evidence for innate motives for sharing rituals and symbols from animal semiotics, developmental neurobiology, physiology of prospective motor control, affective neuroscience and infant communication. Mastery of speech and language depends on polyrhythmic movements in narrative activities of many forms. Infants display intentional activity with feeling and sensitivity for the contingent reactions of other persons. Talk shares many of its generative powers with music and the other ‘imitative arts’. Its special adaptations concern the capacity to produce and learn an endless range of sounds to label discrete learned understandings, topics and projects of intended movement

    An Adaptive Locally Connected Neuron Model: Focusing Neuron

    Full text link
    This paper presents a new artificial neuron model capable of learning its receptive field in the topological domain of inputs. The model provides adaptive and differentiable local connectivity (plasticity) applicable to any domain. It requires no other tool than the backpropagation algorithm to learn its parameters which control the receptive field locations and apertures. This research explores whether this ability makes the neuron focus on informative inputs and yields any advantage over fully connected neurons. The experiments include tests of focusing neuron networks of one or two hidden layers on synthetic and well-known image recognition data sets. The results demonstrated that the focusing neurons can move their receptive fields towards more informative inputs. In the simple two-hidden layer networks, the focusing layers outperformed the dense layers in the classification of the 2D spatial data sets. Moreover, the focusing networks performed better than the dense networks even when 70%\% of the weights were pruned. The tests on convolutional networks revealed that using focusing layers instead of dense layers for the classification of convolutional features may work better in some data sets.Comment: 45 pages, a national patent filed, submitted to Turkish Patent Office, No: -2017/17601, Date: 09.11.201
    corecore