355,139 research outputs found

    Quantification of Model-Form, Predictive, and Parametric Uncertainties in Simulation-Based Design

    Get PDF
    Traditional uncertainty quantification techniques in simulation-based analysis and design focus upon on the quantification of parametric uncertainties-inherent natural variations of the input variables. This is done by developing a representation of the uncertainties in the parameters and then efficiently propagating this information through the modeling process to develop distributions or metrics regarding the output responses of interest. However, in problems with complex or newer modeling methodologies, the variabilities induced by the modeling process itself-known collectively as model-form and predictive uncertainty-can become a significant, if not greater source of uncertainty to the problem. As such, for efficient and accurate uncertainty measurements, it is necessary to consider the effects of these two additional forms of uncertainty along with the inherent parametric uncertainty. However, current methods utilized for parametric uncertainty quantification are not necessarily viable or applicable to quantify model-form or predictive uncertainties. Additionally, the quantification of these two additional forms of uncertainty can require the introduction of additional data into the problem-such as experimental data-which might not be available for particular designs and configurations, especially in the early design-stage. As such, methods must be developed for the efficient quantification of uncertainties from all sources, as well as from all permutations of sources to handle problems where a full array of input data is unavailable. This work develops and applies methods for the quantification of these uncertainties with specific application to the simulation-based analysis of aeroelastic structures

    A Semantic Data Model to Represent Building Material Data in AEC Collaborative Workflows

    Get PDF
    The specification of building material is required in multiple phases of engineering and construction projects towards holistic BIM implementations. Building material information plays a vital role in design decisions by enabling different simulation processes, such as energy, acoustic, lighting, etc. Utilization and sharing of building material information between stakeholders are some of the major influencing factors on the practical implementation of the BIM process. Different meta-data schemas (e.g. IFC) are usually available to represent and share material information amongst partners involved in a construction project. However, these schemas have their own constraints to enable efficient data sharing amongst stakeholders. This paper explains these constraints and proposes a methodological approach for the representation of material data using semantic web concepts aiming to support the sharing of BIM data and interoperability enhancements in collaboration workflows. As a result, the DICBM (https://w3id.org/digitalconstruction/BuildingMaterials) ontology was developed which improves the management of building material information in the BIM-based collaboration process.:Abstract 1. Introduction and Background 1.1 Building Information Modeling for collaboration 1.2 Information management in AEC using semantic web technologies 2 DICBM: Digital Construction Building Material Ontology 2.1 Building Material Data in IFC 2.2 Overview of the building material ontology 2.3 Integration of external ontology concepts and roles 2.4 Material Definition 2.5 Material, Material Type, and Material Property 2.6 Data Properties in DICBM 3 Conclusions Acknowledgments Reference

    A Service Life Analysis of Coast Guard C-130 Aircraft

    Get PDF
    The U. S. Coast Guard, much like the rest of the Armed Services, is facing a dramatic transformation of its forces to meet current and future service requirements. The Coast Guard has responded to this transformation by initiating the Deepwater System, a complete review of the offshore mission requirements and the modernization of its infrastructure. In particular, Deepwater will review and modernize the Coast Guard\u27s aviation assets, improving aircraft systems, airborne sensors, and communications and information management systems. However, these capability advancements will take time and money to implement, and will require careful management of the current resources to ensure a smooth transition. One of the oldest and most versatile Coast Guard aircraft is the C-130, which the Coast Guard uses for Long Range Surveillance missions (LRS), as well as for logistics transport. Service life decisions regarding the C-130 are complicated by aging aircraft issues, and the forced introduction of a new generation C-130. It will be difficult for Coast Guard decision makers to select how program funding should be executed within the C-130 fleet. This study examines how long the current airframes can safely remain in service, how much the remaining service life will cost, and what level of availability can be realized for the rest of the service life. Once these questions can be reasonably answered, it will then be possible to perform an insightful and justifiable analysis of alternatives for modernizing, sustaining, and if necessary retiring the C-130s.46 Leaders at the United States Coast Guard\u27s Aircraft Repair and Service Center (ARSC) in Elizabeth City, North Carolina recently formalized their planning and analysis functions by adding a dedicated branch to their command structure. The Planning and Analysis Branch intends to apply computer modeling and simulation to study the impact of process changes to the various Programmed Depot Maintenance (PDM) lines. This research considers the applicability of this type of modeling and simulation, using ARENA to study the current HH-6OJ PDM process. The contribution of this research is a methodology specific to ARSC needs, an analysis of methodology based on a discrete event simulation model of PDM lines, and a specific case study demonstrating the methodologies. The response variable of interest is average PDM process time as a function of either in-sourcing or out-sourcing labor for a major process step. The research includes development and evaluation of a macro-level process model using ARENA 5.0

    BIM Integrated and Reference Process-based Simulation Method for Construction Project Planning

    Get PDF
    Die Verwendung von Simulationen zur Unterstรผtzung traditioneller Planungsverfahren fรผr Bauprojekte hat viele Vorteile, die in verschiedenen akademischen Forschungen vorgestellt wurden. Viele Anwendungen haben erfolgreich das Potenzial der Simulationsmethode zur Verbesserung der Qualitรคt der Projektplanung demonstriert. Doch eine breite Anwendung der Simulationsmethoden zur Unterstรผtzung der Planung von Bauprojekten konnte sich in der Praxis bis zum jetzigen Zeitpunkt nicht durchsetzen. Aufgrund einiger groรŸer Hindernisse und Herausforderungen ist der Einsatz im Vergleich zu anderen Branchen noch sehr begrenzt. Die Komplexitรคt sowie die dynamischen Wechselprozesse der unterschiedlichen Bauvorhaben stellen die erste Herausforderung dar.Die Anforderungen machen es sehr schwierig die verschieden Situationen realistisch zu modellieren und das Verhalten von Bauprozessen und die Interaktion mit den zugehรถrigen Ressourcen fรผr reale Bauvorhaben darzustellen. Das ist einer der Grรผnde fรผr den Mangel an speziellen Simulationswerkzeugen in der Bauprojektplanung. Die zweite Herausforderung besteht in der groรŸen Menge an Projektinformationen, die in das Simulationsmodell integriert und wรคhrend des gesamten Lebenszyklus des Projekts angepasst werden mรผssen. Die Erstellung von Simulationsmodellen, Simulationsszenarien sowie die Analyse und Verifizierung der Simulationsergebnisse ist langwierig. Ad-hoc Simulation sind daher nicht mรถglich. Zur Erstellung zuverlรคssiger Simulationsmodelle sind daher umfangreiche Ressourcen und Mitarbeiter mit speziellen Fachwissen erforderlich. Die vorgestellten Herausforderungen verhindern die breite Anwendung der Simulationsmethode zur Unterstรผtzung der Bauprojektplanung und das Einsetzen der Software als wesentlicher Bestandteil des Arbeitsablaufes fรผr die Bauplanung in der Praxis. Die Forschungsarbeit in dieser Arbeit befasst sich mit diesen Herausforderungen durch die Entwicklung eines Ansatzes sowie einer Plattform fรผr die schnelle Aufstellung von Simulationsmodellen fรผr Bauprojekte. Das Hauptziel dieser Forschung ist die Entwicklung eines integrierten und referenzmodellbasierten BIM Simulationsansatz zur Unterstรผtzung der Planung von Bauprojekten und die Mรถglichkeit der Zusammenarbeit aller am Planungs- und Simulationsprozess beteiligten Akteure. Die erste Herausforderung wird durch die Einfรผhrung eines RPM-Konzepts (Reference Process Model) durch die Modellierung von Konstruktionsprozessen unter Verwendung von Business Process Modeling and Notation (BPMN) angegangen. Der Vorteil der RPM Modelle ist das sie bearbeitet und modifiziert kรถnnen und dass sie automatisch als einsatzbereite Module in Simulationsmodelle umgewandelt werden kรถnnen. Die RPM-Modelle enthalten auch Informationen zu Ressourcenanforderungen und andere verwandte Informationen fรผr verschiedene Baubereiche mit unterschiedlichen Detaillierungsgraden. Die Verwendung von BPMN hat den Vorteil, dass die Simulationsmodellierung fรผr das Projektteam, einschlieรŸlich derjenigen, die sich nicht mit der Simulation auskennen, flexibler, interoperabler und verstรคndlicher ist. Bei diesem Ansatz ist die Modellierung von Referenzprozessmodellen vollstรคndig von den Simulationskernkomponenten getrennt, um das Simulations-Toolkit generisch und erweiterbar fรผr verschiedenste Konstruktionsbereiche wie Gebรคude und Brรผcken. Der vorgestellte Forschungsansatz unterstรผtzt die kontinuierliche Anwendung von Simulationsmodellen wรคhrend des gesamten Projektlebenszyklus. Die Simulationsmodelle, die zur Unterstรผtzung der Planung in der frรผhen Entwurfsphase erstellt werden, kรถnnen von Simulationsexperten wรคhrend der gesamten Planungs- und Bauphase weiter ausgebaut und aktualisiert werden. Die zweite Herausforderung wird durch die direkte Integration der Building Information Modeling (BIM) -Methode in die Simulationsmodellierung auf der Grundlage des Industry Foundation Classes-IFC (ISO 16739) , dem am hรคufigsten verwendeten BIM-Austauschformat, angegangen. Da die BIM-Modelle einen wichtigen Teil der Eingabeinformationen von Simulationsmodellen enthalten, kรถnnen sie als Grundlage fรผr die Visualisierung von Ergebnissen in Form von 4D-BIM-Modellen verwendet werden. Diese Integration ermรถglicht die schnelle und automatische Filterung und Extraktion sowie die Umwandlung notwendiger Informationen aus BIM Entwurf-Modellen. Um die Erstellung detaillierter Projektmodelle zu beschleunigen, wurde eine spezielle Methode fรผr die halbautomatische Top-Down-Detaillierung von Projektstammmodelle entwickelt, die notwendige Eingangsdaten fรผr die Simulationsmodelle sind. Diese Methode bietet den Vorteil, dass Konstruktionsalternativen mit minimalen ร„nderungen am Simulationsmodell untersucht werden kรถnnen. Der entwickelte Ansatz wurde als Software- Prototyp in Form eines modularen Construction Simulation Toolkit (CST) basierend auf der Discrete Event Simulation (DES)- Methode und eines Collaboration- Webportals (ProSIM) zum Verwalten von Simulationsmodellen implementiert. Die so eingebettete Simulation ermรถglicht mit minimalen ร„nderungen die Bewertung von Entwurfsalternativen und Konstruktionsmethoden auf den Bauablauf. Produktions- und Logistiksvorgรคnge kรถnnen gleichzeitig in einer einheitlichen Umgebung simuliert werden und berรผcksichtigen die gemeinsam genutzten Ressourcen und die Interaktion zwischen Produktions- und Logistikaktivitรคten. Es berรผcksichtigt auch die ร„nderungen im Baustellenlayout wรคhrend der Konstruktionsphase. Die Verifizierung und Validierung des vorgeschlagenen Ansatzes wird durch verschiedene hypothetische und reale Bauprojekten durchgefรผhrt.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 ReferencesUsing simulation to support construction project planning has many advantages, which have been presented in various academic researches. Many applications have successfully demonstrated the potential of using simulation to improve the quality of construction project planning. However, the wide adoption of simulation has not been achieved in practice yet. It still has very limited use compared with other industries due to some major obstacles and challenges. The first challenge is the complexity of construction processes and projects planning methods, which make it very difficult to develop realistic simulation models of construction processes and represent their dynamic behavior and the interaction with project resources. This led to lack of special simulation tools for construction project planning. The second challenge is the huge amount of project information that has to be integrated into the simulation model and to be maintained throughout the design, planning and construction phases. The preparation of ad-hoc simulation models and setting up different scenarios and verification of simulation results usually takes a long time. Therefore, creating reliable simulation models requires extensive resources with advanced skills. The presented challenges prevent the wide application of simulation techniques to support and improve construction project planning and adopt it as an essential part of the construction planning workflow in practice. The research work in this thesis addresses these challenges by developing an approach and platform for rapid development of simulation models for construction projects. The main objective of this research is to develop a BIM integrated and reference process-based simulation approach to support planning of construction projects and to enable collaboration among all actors involved in the planning and simulation process. The first challenge has been addressed through the development of a construction simulation toolkit and the Reference Process Model (RPM) method for modelling construction processes for production and logistics using Business Process Modelling and Notation (BPMN). The RPM models are easy to understood also by non-experts and they can be transformed automatically into simulation models as ready-to-use modules. They describe the workflow and logic of construction processes and include information about duration, resource requirements and other related information for different construction domains with different levels of details. The use of BPMN has many advantages. It enables the understanding of how simulation models work by project teams, including those who are not experts in simulation. In this approach, the modelling of Reference Process Models is totally separated from the simulation core components. In this way, the simulation toolkit is generic and extendable for various construction types such as buildings, bridges and different construction domains such as structural work and indoor operations. The presented approach supports continuous adoption of simulation models throughout the whole project life cycle. The simulation model which supports project planning in the early design phase can be continuously extended with more detailed RPMs and updated information through the planning and construction phases. The second challenge has been addressed by supporting direct integration of Building Information Modelling (BIM) method with the simulation modelling based on the Industry Foundation Classes IFC (ISO 16739) standard, which is the most common and only ISO standard used for exchanging BIM models. As the BIM models contain the biggest part of the input information of simulation models and they can be used for effective visualization of results in the form of animated 4D BIM models. The integration between BIM and simulation enables fast and semi-automatic filtering, extraction and transformation of the necessary information from BIM models for both design and construction site models. In addition, a special top-down semi-automatic detailing method was developed in order to accelerate the process of preparing detailed project schedules, which are essential input data for the simulation models and hence reduce the time and efforts needed to create simulation models. The developed approach has been implemented as a software prototype in the form of a modular Construction Simulation Toolkit (CST) based on the Discrete Event Simulation (DES) method and an online collaboration web portal 'ProSIM' for managing simulation models. The collaboration portal helps to overcome the problem of huge information and make simulation models accessible for non simulation experts. Simulation models created by CST toolkit facilitate the evaluation of design alternatives and construction methods with minimal changes in the simulation model. Both production and logistic operations can be simulated at the same time in a unified environment and take into account the shared resources and the interaction between production and logistic activities. It also takes into account the dynamic nature of construction projects and hence the changes in the construction site layout during the construction phase. The verification and validation of the proposed approach is carried out through various academic and real construction project case studies.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 Reference

    ๊ณต์ • ์„ค๊ณ„ ๋ฐ ์ตœ์ ํ™”์— ๋Œ€ํ•œ ์œ„ํ—˜์„ฑ ๊ธฐ๋ฐ˜ ๋‚ด์žฌ์  ์•ˆ์ „์„ฑ ์ ‘๊ทผ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€,2020. 2. ์ด์ข…๋ฏผ.The role of process safety is to prevent potential disasters in the chemical process. While a variety of techniques are commonly used in the field, accurate risk assessment and analysis require quantitative methods to allow direct comparisons between different alternatives or designs, among other benefits. However, there are various processes with different characteristics and complexities, and not all methods can be equally applied. It is essential to consider safety according to the characteristic of each process and to establish a design method which considers safety from the initial design stage to the operation stage. However, most process safety approaches, such as Quantitative Risk Assessment (QRA) or Hazard and Operability (HAZOP) studies, are conducted at the end of the design process and often have expansive and time-consuming drawbacks due to their repetitive nature. Therefore this thesis proposed a risk-based design method and modeling for designing an inherently safe process to consider the economic feasibility and process safety simultaneously. The thesis deals with elements such as process knowledge management, process safety information, inherently safe design, process hazard analysis for the system configuration required to analyze, and understand the potential risk during the process design and operation. As for the process to apply this, natural gas-related processes, which are recently attracting attention due to the development of shale gas and small and medium-sized gas reservoirs were selected, to determine the optimal design of natural gas liquefaction process. In Chapter 2 of this thesis, the accident models used in the chemical process were analyzed, and the development and validation of the necessary indoor release model were addressed. Chapter 3 covered interactive simulation that uses process data during accident modeling. Finally, Chapter 4 presented a multi-objective optimization methodology to design a safer process by introducing risk modeling and inherent safety. The method is applied to the preliminary design stage of the natural gas liquefaction process and found the result that considers process safety as well as economic feasibility. The limitations of conventional designs using the concept of inherent safety were overcome by implementing the quantitative risk assessment procedure directly in the optimization sequence.ํ™”ํ•™ ๊ณต์ • ์•ˆ์ „์€ ๊ณต์ •์˜ ์œ„ํ—˜์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ–‰๋œ๋‹ค. ์—ฌ๋Ÿฌ ๊ธฐ๋ฒ•๋“ค ์ค‘ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ณต์ • ๊ด€๋ฆฌ ๋‹จ๊ณ„์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์ด ์‚ฌ์šฉ๋˜์ง€๋งŒ, ํŠนํžˆ ๊ณต์ • ์•ˆ์ „์„ฑ๊ณผ ์œ„ํ—˜์„ฑ์„ ์ •ํ™•ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•˜๊ณ  ๋ถ„์„ํ•˜๋ ค๋ฉด ์„œ๋กœ ๋‹ค๋ฅธ ์„ค๊ณ„๋‚˜ ๋Œ€์•ˆ ๋“ฑ๊ณผ ์ง์ ‘์ ์ธ ๋น„๊ต๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์ •๋Ÿ‰์  ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๊ฒŒ ๋œ๋‹ค. ํ•˜์ง€๋งŒ ํŠน์„ฑ๊ณผ ๋ณต์žก์„ฑ์ด ๋‹ค๋ฅธ ๋‹ค์–‘ํ•œ ๊ณต์ •๋“ค์ด ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ ๊ณต์ •์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ์•ˆ์ „์„ ๊ณ ๋ คํ•ด์•ผ ํ•˜๊ณ , ์ดˆ๊ธฐ ์„ค๊ณ„ ๋‹จ๊ณ„๋ถ€ํ„ฐ ์šด์˜ ๋‹จ๊ณ„๊นŒ์ง€ ์•ˆ์ „์„ ๊ณ ๋ คํ•œ ํ™”ํ•™ ๊ณต์ • ์„ค๊ณ„ ๋ฐฉ๋ฒ•์„ ํ™•๋ฆฝํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ QRA (Quantitative Risk Assessment) ๋˜๋Š” HAZOP (Hazard and Operability study) ์—ฐ๊ตฌ์™€ ๊ฐ™์€ ๋Œ€๋ถ€๋ถ„์˜ ๊ณต์ • ์•ˆ์ „ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์„ค๊ณ„ ์ ˆ์ฐจ ๋งˆ์ง€๋ง‰์— ๊ณ ๋ ค๋˜๊ณ , ์ข…์ข… ๋ฐ˜๋ณต์ ์ด๊ฑฐ๋‚˜ ์‹œ๊ฐ„ ์†Œ๋ชจ์ ์ธ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ๊ธด ์‹œ๊ฐ„๊ณผ ๋งŽ์€ ๋น„์šฉ์ด ๋“œ๋Š” ๋‹จ์ ์ด ์กด์žฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ณต์ •์˜ ๊ฒฝ์ œ์  ํƒ€๋‹น์„ฑ๊ณผ ์•ˆ์ „์„ฑ์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ์งˆ์ ์œผ๋กœ ์•ˆ์ „ํ•œ ๊ณต์ •์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์—ฌ ์œ„ํ—˜ ๊ธฐ๋ฐ˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๊ณผ ์„ค๊ณ„์— ํ•„์š”ํ•œ ๋ชจ๋ธ๋ง์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณต์ • ์„ค๊ณ„ ๋ฐ ์šด์˜ ์ค‘์— ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์œ„ํ—˜์„ ๋ถ„์„ํ•˜๊ณ  ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์‹œ์Šคํ…œ ๊ตฌ์„ฑ์„ ์œ„ํ•ด ๊ณต์ • ์ง€์‹ ๊ด€๋ฆฌ, ๊ณต์ • ์•ˆ์ „ ์ •๋ณด, ๋‚ด์žฌ์ ์œผ๋กœ ์•ˆ์ „ํ•œ ์„ค๊ณ„, ๊ณต์ • ์œ„ํ—˜ ๋ถ„์„, ํ”„๋กœ์ ํŠธ ๊ฒฝ์ œ์„ฑ ๊ฒ€ํ†  ๋“ฑ์˜ ์š”์†Œ๋“ค์„ ๋‹ค๋ฃจ์—ˆ๋‹ค. ์ด๋ฅผ ์ ์šฉํ•  ๊ณต์ •์œผ๋กœ๋Š” ์ตœ๊ทผ ์…ฐ์ผ ๊ฐ€์Šค ๋ฐ ์ค‘์†Œ๊ทœ๋ชจ ๊ฐ€์Šค์ „ ๋“ฑ์˜ ๊ฐœ๋ฐœ๋กœ ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋Š” ์ฒœ์—ฐ๊ฐ€์Šค ๊ด€๋ จ ๊ณต์ •์„ ์„ ์ •ํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ๋‹ค๋ชฉ์  ์ตœ์ ํ™”๋ฅผ ํ†ตํ•œ LNG ์•กํ™” ๊ณต์ •์˜ ์ตœ์  ์„ค๊ณ„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ 2์žฅ์—์„œ๋Š” ํ™”ํ•™์‚ฌ๊ณ  ๊ฒฐ๊ณผ ๋ชจ๋ธ๋ง์— ๋Œ€ํ•ด ๋‹ค๋ฃจ์–ด ํ™”ํ•™ ๊ณต์ •์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋ชจ๋ธ๋“ค์— ๋Œ€ํ•œ ๋ถ„์„์ด ํ–‰ํ•ด์กŒ์œผ๋ฉฐ ์ถ”๊ฐ€๋กœ ํ•„์š”ํ•˜๋‹ค๊ณ  ๊ณ ๋ ค๋˜๋Š” ์‹ค๋‚ด ์œ ์ถœ ๋ชจ๋ธ์— ๋Œ€ํ•œ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. 3์žฅ์—์„œ๋Š” ๊ณต์ • ์ •๋ณด๋ฅผ ์‚ฌ๊ณ  ๋ชจ๋ธ๋ง์— ์‚ฌ์šฉํ•˜๋Š” ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃจ์—ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ 4์žฅ์—์„œ ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋ฌผ๋“ค์„ ์ ์šฉํ•˜์—ฌ ๋ณด๋‹ค ์•ˆ์ „ํ•œ ๊ณต์ •์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ๋‚ด์žฌ์  ์•ˆ์ „์„ฑ์˜ ๊ฐœ๋…์„ ๋„์ž…ํ•œ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ์ฒœ์—ฐ๊ฐ€์Šค ์•กํ™”๊ณต์ •์˜ ์˜ˆ๋น„ ์„ค๊ณ„๋‹จ๊ณ„์— ์ ์šฉํ•˜์—ฌ ๊ฒฝ์ œ์„ฑ๊ณผ ์•ˆ์ „์„ฑ์„ ๋™์‹œ์— ๊ณ ๋ คํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์•„๋ƒˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๊ธฐ์กด ๋‚ด์žฌ์  ์•ˆ์ „์„ฑ์„ ๊ณ ๋ คํ•œ ์„ค๊ณ„๋“ค์ด ๊ฐ€์ง€๊ณ  ์žˆ๋˜ ํ•œ๊ณ„๋ฅผ ์ •๋Ÿ‰์  ์œ„ํ—˜์„ฑ ํ‰๊ฐ€ ์ ˆ์ฐจ๋ฅผ ์ตœ์ ํ™” ๊ณผ์ •์— ์ง์ ‘ ๊ตฌํ˜„ํ•˜๋Š” ๊ฒƒ์„ ํ†ตํ•ด ๋ณด์™„ํ•˜์˜€๋‹ค.CHAPTER 1. Introduction 1 1.1. Research motivation 1 1.2. Research objective 5 1.3. Outline 6 CHAPTER 2. Accident models in Chemical Process Industries 7 2.1. Introduction 7 2.2. Analysis of conventional accident models for chemical processes 9 2.3. Development of indoor release model 12 2.4. Mitigation effect analysis 35 2.5. Concluding remarks 43 CHAPTER 3. Interactive Process-Accident Simulation 45 3.1. Introduction 45 3.2. Gas pressure regulation station case study 46 3.3. Concluding remarks 53 CHAPTER 4. Process Design with Inherent Safety 54 4.1. Introduction 54 4.2. Process description 61 4.3. Design optimization 68 4.4. Concluding remarks 86 CHAPTER 5. Conclusion 88 Nomenclature 89 References 92 Abstract in Korean (๊ตญ๋ฌธ์ดˆ๋ก) 99Docto

    On Modeling and Analyzing Cost Factors in Information Systems Engineering

    Get PDF
    Introducing enterprise information systems (EIS) is usually associated with high costs. It is therefore crucial to understand those factors that determine or influence these costs. Though software cost estimation has received considerable attention during the last decades, it is difficult to apply existing approaches to EIS. This difficulty particularly stems from the inability of these methods to deal with the dynamic interactions of the many technological, organizational and projectdriven cost factors which specifically arise in the context of EIS. Picking up this problem, we introduce the EcoPOST framework to investigate the complex cost structures of EIS engineering projects through qualitative cost evaluation models. This paper extends previously described concepts and introduces design rules and guidelines for cost evaluation models in order to enhance the development of meaningful and useful EcoPOST cost evaluation models. A case study illustrates the benefits of our approach. Most important, our EcoPOST framework is an important tool supporting EIS engineers in gaining a better understanding of the critical factors determining the costs of EIS engineering projects
    • โ€ฆ
    corecore