12 research outputs found

    Introduction to clarithmetic II

    Full text link
    The earlier paper "Introduction to clarithmetic I" constructed an axiomatic system of arithmetic based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html), and proved its soundness and extensional completeness with respect to polynomial time computability. The present paper elaborates three additional sound and complete systems in the same style and sense: one for polynomial space computability, one for elementary recursive time (and/or space) computability, and one for primitive recursive time (and/or space) computability

    Introduction to clarithmetic I

    Get PDF
    "Clarithmetic" is a generic name for formal number theories similar to Peano arithmetic, but based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of the more traditional classical or intuitionistic logics. Formulas of clarithmetical theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Imposing various complexity constraints on such solutions yields various versions of clarithmetic. The present paper introduces a system of clarithmetic for polynomial time computability, which is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be efficiently extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is written in a semitutorial style and targets readers with no prior familiarity with computability logic

    The taming of recurrences in computability logic through cirquent calculus, Part I

    Full text link
    This paper constructs a cirquent calculus system and proves its soundness and completeness with respect to the semantics of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html). The logical vocabulary of the system consists of negation, parallel conjunction, parallel disjunction, branching recurrence, and branching corecurrence. The article is published in two parts, with (the present) Part I containing preliminaries and a soundness proof, and (the forthcoming) Part II containing a completeness proof

    Ptarithmetic

    Get PDF
    The present article introduces ptarithmetic (short for “polynomial time arithmetic”) — a formal number theory similar to the well known Peano arithmetic, but based on the recently born computability logic instead of classical logic. The formulas of ptarithmetic represent interactive computational problems rather than just true/false statements, and their “truth” is understood as existence of a polynomial time solution. The system of ptarithmetic elaborated in this article is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be effectively extracted from a proof of T . And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is self-contained, and can be read without any prior familiarity with computability logic

    Ptarithmetic

    Get PDF
    The present article introduces ptarithmetic (short for "polynomial time arithmetic") -- a formal number theory similar to the well known Peano arithmetic, but based on the recently born computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of classical logic. The formulas of ptarithmetic represent interactive computational problems rather than just true/false statements, and their "truth" is understood as existence of a polynomial time solution. The system of ptarithmetic elaborated in this article is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be effectively extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is self-contained, and can be read without any previous familiarity with computability logic.Comment: Substantially better versions are on their way. Hence the present article probably will not be publishe
    corecore