2,191 research outputs found

    RoBuSt: A Crash-Failure-Resistant Distributed Storage System

    Full text link
    In this work we present the first distributed storage system that is provably robust against crash failures issued by an adaptive adversary, i.e., for each batch of requests the adversary can decide based on the entire system state which servers will be unavailable for that batch of requests. Despite up to γn1/log⁑log⁑n\gamma n^{1/\log\log n} crashed servers, with γ>0\gamma>0 constant and nn denoting the number of servers, our system can correctly process any batch of lookup and write requests (with at most a polylogarithmic number of requests issued at each non-crashed server) in at most a polylogarithmic number of communication rounds, with at most polylogarithmic time and work at each server and only a logarithmic storage overhead. Our system is based on previous work by Eikel and Scheideler (SPAA 2013), who presented IRIS, a distributed information system that is provably robust against the same kind of crash failures. However, IRIS is only able to serve lookup requests. Handling both lookup and write requests has turned out to require major changes in the design of IRIS.Comment: Revised full versio

    Bounding Cache Miss Costs of Multithreaded Computations Under General Schedulers

    Full text link
    We analyze the caching overhead incurred by a class of multithreaded algorithms when scheduled by an arbitrary scheduler. We obtain bounds that match or improve upon the well-known O(Q+Sβ‹…(M/B))O(Q+S \cdot (M/B)) caching cost for the randomized work stealing (RWS) scheduler, where SS is the number of steals, QQ is the sequential caching cost, and MM and BB are the cache size and block (or cache line) size respectively.Comment: Extended abstract in Proceedings of ACM Symp. on Parallel Alg. and Architectures (SPAA) 2017, pp. 339-350. This revision has a few small updates including a missing citation and the replacement of some big Oh terms with precise constant

    Well-Structured Futures and Cache Locality

    Full text link
    In fork-join parallelism, a sequential program is split into a directed acyclic graph of tasks linked by directed dependency edges, and the tasks are executed, possibly in parallel, in an order consistent with their dependencies. A popular and effective way to extend fork-join parallelism is to allow threads to create futures. A thread creates a future to hold the results of a computation, which may or may not be executed in parallel. That result is returned when some thread touches that future, blocking if necessary until the result is ready. Recent research has shown that while futures can, of course, enhance parallelism in a structured way, they can have a deleterious effect on cache locality. In the worst case, futures can incur Ω(PT∞+tT∞)\Omega(P T_\infty + t T_\infty) deviations, which implies Ω(CPT∞+CtT∞)\Omega(C P T_\infty + C t T_\infty) additional cache misses, where CC is the number of cache lines, PP is the number of processors, tt is the number of touches, and T∞T_\infty is the \emph{computation span}. Since cache locality has a large impact on software performance on modern multicores, this result is troubling. In this paper, however, we show that if futures are used in a simple, disciplined way, then the situation is much better: if each future is touched only once, either by the thread that created it, or by a thread to which the future has been passed from the thread that created it, then parallel executions with work stealing can incur at most O(CPT∞2)O(C P T^2_\infty) additional cache misses, a substantial improvement. This structured use of futures is characteristic of many (but not all) parallel applications

    Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers

    Full text link
    The nested parallel (a.k.a. fork-join) model is widely used for writing parallel programs. However, the two composition constructs, i.e. "βˆ₯\parallel" (parallel) and ";;" (serial), are insufficient in expressing "partial dependencies" or "partial parallelism" in a program. We propose a new dataflow composition construct "⇝\leadsto" to express partial dependencies in algorithms in a processor- and cache-oblivious way, thus extending the Nested Parallel (NP) model to the \emph{Nested Dataflow} (ND) model. We redesign several divide-and-conquer algorithms ranging from dense linear algebra to dynamic-programming in the ND model and prove that they all have optimal span while retaining optimal cache complexity. We propose the design of runtime schedulers that map ND programs to multicore processors with multiple levels of possibly shared caches (i.e, Parallel Memory Hierarchies) and provide theoretical guarantees on their ability to preserve locality and load balance. For this, we adapt space-bounded (SB) schedulers for the ND model. We show that our algorithms have increased "parallelizability" in the ND model, and that SB schedulers can use the extra parallelizability to achieve asymptotically optimal bounds on cache misses and running time on a greater number of processors than in the NP model. The running time for the algorithms in this paper is O(βˆ‘i=0hβˆ’1Qβˆ—(t;Οƒβ‹…Mi)β‹…Cip)O\left(\frac{\sum_{i=0}^{h-1} Q^{*}({\mathsf t};\sigma\cdot M_i)\cdot C_i}{p}\right), where Qβˆ—Q^{*} is the cache complexity of task t{\mathsf t}, CiC_i is the cost of cache miss at level-ii cache which is of size MiM_i, Οƒβˆˆ(0,1)\sigma\in(0,1) is a constant, and pp is the number of processors in an hh-level cache hierarchy
    • …
    corecore