52 research outputs found

    An Assurance Framework for Independent Co-assurance of Safety and Security

    Get PDF
    Integrated safety and security assurance for complex systems is difficult for many technical and socio-technical reasons such as mismatched processes, inadequate information, differing use of language and philosophies, etc.. Many co-assurance techniques rely on disregarding some of these challenges in order to present a unified methodology. Even with this simplification, no methodology has been widely adopted primarily because this approach is unrealistic when met with the complexity of real-world system development. This paper presents an alternate approach by providing a Safety-Security Assurance Framework (SSAF) based on a core set of assurance principles. This is done so that safety and security can be co-assured independently, as opposed to unified co-assurance which has been shown to have significant drawbacks. This also allows for separate processes and expertise from practitioners in each domain. With this structure, the focus is shifted from simplified unification to integration through exchanging the correct information at the right time using synchronisation activities

    A PRISMA-driven systematic mapping study on system assurance weakeners

    Full text link
    Context: An assurance case is a structured hierarchy of claims aiming at demonstrating that a given mission-critical system supports specific requirements (e.g., safety, security, privacy). The presence of assurance weakeners (i.e., assurance deficits, logical fallacies) in assurance cases reflects insufficient evidence, knowledge, or gaps in reasoning. These weakeners can undermine confidence in assurance arguments, potentially hindering the verification of mission-critical system capabilities. Objectives: As a stepping stone for future research on assurance weakeners, we aim to initiate the first comprehensive systematic mapping study on this subject. Methods: We followed the well-established PRISMA 2020 and SEGRESS guidelines to conduct our systematic mapping study. We searched for primary studies in five digital libraries and focused on the 2012-2023 publication year range. Our selection criteria focused on studies addressing assurance weakeners at the modeling level, resulting in the inclusion of 39 primary studies in our systematic review. Results: Our systematic mapping study reports a taxonomy (map) that provides a uniform categorization of assurance weakeners and approaches proposed to manage them at the modeling level. Conclusion: Our study findings suggest that the SACM (Structured Assurance Case Metamodel) -- a standard specified by the OMG (Object Management Group) -- may be the best specification to capture structured arguments and reason about their potential assurance weakeners

    Is current incremental safety assurance sound ?

    Get PDF
    International audienceIncremental design is an essential part of engineering. Without it, engineering would not likely be an economic, nor an effective, aid to economic progress. Further, engineering relies on this view of incrementality to retain the reliability attributes of the engineering method. When considering the assurance of safety for such artifacts, it is not surprising that the same economic and reliability arguments are deployed to justify an incremental approach to safety assurance. In a sense, it is possible to argue that, with engineering artifacts becoming more and more complex, it would be economically disastrous to not “do” safety incrementally. Indeed, many enterprises use such an incremental approach, reusing safety artifacts when assuring incremental design changes. In this work, we make some observations about the inadequacy of this trend and suggest that safety practices must be rethought if incremental safety approaches are ever going to be fit for purpose. We present some examples to justify our position and comment on what a more adequate approach to incremental safety assurance may look like

    How to increase efficiency with the certification of process compliance

    Get PDF
    Certification as well as self-assessment of safety-critical systems is an expensive and time-consuming activity due to the necessity of providing numerous deliverables. These deliverables can be process-related or product-related. Process-related deliverables are aimed at showing compliance with normative documents (e.g., safety standards), which impose specific requirements on the development process (e.g., reference models for the safety life-cycles). In this lecture, we limit our attention to process-related deliverables and we propose a solution aimed at reducing time and cost related to their provision. Our solution consists of the combination of three approaches: the safety-oriented process line engineering approach, the process-based argumentation line approach, and the model driven certification-oriented approach. More specifically, we define how these three approaches are combined and which techniques, tools and guidelines should be used to implement the resulting approach. Then, via small-sized but realistic process-fragments, we illustrate it. Finally, we present a roadmap for future research directions.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The Last Decade in Review: Tracing the Evolution of Safety Assurance Cases through a Comprehensive Bibliometric Analysis

    Full text link
    Safety assurance is of paramount importance across various domains, including automotive, aerospace, and nuclear energy, where the reliability and acceptability of mission-critical systems are imperative. This assurance is effectively realized through the utilization of Safety Assurance Cases. The use of safety assurance cases allows for verifying the correctness of the created systems capabilities, preventing system failure. The latter may result in loss of life, severe injuries, large-scale environmental damage, property destruction, and major economic loss. Still, the emergence of complex technologies such as cyber-physical systems (CPSs), characterized by their heterogeneity, autonomy, machine learning capabilities, and the uncertainty of their operational environments poses significant challenges for safety assurance activities. Several papers have tried to propose solutions to tackle these challenges, but to the best of our knowledge, no secondary study investigates the trends, patterns, and relationships characterizing the safety case scientific literature. This makes it difficult to have a holistic view of the safety case landscape and to identify the most promising future research directions. In this paper, we, therefore, rely on state-of-the-art bibliometric tools(e.g., VosViewer) to conduct a bibliometric analysis that allows us to generate valuable insights, identify key authors and venues, and gain a birds eye view of the current state of research in the safety assurance area. By revealing knowledge gaps and highlighting potential avenues for future research, our analysis provides an essential foundation for researchers, corporate safety analysts, and regulators seeking to embrace or enhance safety practices that align with their specific needs and objectives

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Studying Software Engineering Patterns for Designing Machine Learning Systems

    Full text link
    Machine-learning (ML) techniques have become popular in the recent years. ML techniques rely on mathematics and on software engineering. Researchers and practitioners studying best practices for designing ML application systems and software to address the software complexity and quality of ML techniques. Such design practices are often formalized as architecture patterns and design patterns by encapsulating reusable solutions to commonly occurring problems within given contexts. However, to the best of our knowledge, there has been no work collecting, classifying, and discussing these software-engineering (SE) design patterns for ML techniques systematically. Thus, we set out to collect good/bad SE design patterns for ML techniques to provide developers with a comprehensive and ordered classification of such patterns. We report here preliminary results of a systematic-literature review (SLR) of good/bad design patterns for ML
    • …
    corecore