20 research outputs found

    Introduction to Interactive Visual Decision Analytics Minitrack

    Get PDF
    N/

    Learning Education: An ‘Educational Big Data’ approach for monitoring, steering and assessment of the process of continuous improvement of education

    Get PDF
    Changing regulations, pedagogy and didactics worldwide, have ensured that the educational system has changed severely. But the entrance of Web 2.0 and other technologies had a significant impact on the way we educate and assess our education too. The Web 2.0 applications also increase the cooperation between stakeholders in education and has led to the phenomenon ‘Learning Education’. Learning Education is a term we use for the phenomenon where educational stakeholders (i.e. teachers, students, policy-makers, partners etc.) can learn from each other in order to ultimately improve education. The developments within the Interactive Internet (Web 2.0) enabled the development of innovative and sophisticated strategies for monitoring, steering and assessing the ‘learning of education’. These developments give teachers possibilities to enhance their education with digital applications, but also to monitor, steer and assess their own behavior. This process can be done with multiple sources, for example questionnaires, interviews, panel research, but also the more innovative sources like big social data and network interactions. In this article we use the term ‘educational big data’ for these sources and use it for monitoring, steering and assessing the developments within education, according to the Plan, Do, Check, Act principle (PDCA). We specifically analyze the Check-phase and describe it with the Learning Education Check Framework (LECF). We operationalize the LECF with a Learning Education Check System (LECS), which is capable to guide itself and change those directions as well in response to changing ways and trends in education and their practices. The system supports the data-driven decision making process within the learning education processes. So, in this article we work on the LECF and propose and describe a paper-based concept of the – by educational big data driven – LECS. Besides that, we show the possibilities, reliability and validity for measuring the ‘Educational Big Data’ within an educational setting

    Interface, Spring 2014

    Get PDF

    Structured Sensemaking of Videographic Information within Dataphoric Space

    Get PDF
    Attempts to create a structured sensemaking model have proven difficult. Much of the research today has evolved into a cacophony of conceptual models. Many of these sensemaking models have been proposed but not tested. Using structural equations, a unified model of sensemaking was developed and tested. This structured sensemaking model contains five sensemaking constructs: chaos, anchoring, articulation, retrospection, and identity. This model was tested using data collected from 224 educationally focused YouTube videos. The confirmatory factor model developed for this research has a measured Comparative Fit Index of 0.979, a measured Standardized Root Mean Square Residual of 0.078, and a measured Akaike’s Information Criterion of 182.892. The associated structural model has a measured Comparative Fit Index of 0.991, a measured Standardized Root Mean Square Residual of 0.047, and a measured Akaike’s Information Criterion of 131.680. This theory of structured sensemaking supports a) the unification of five sensemaking constructs b) a structured sensemaking framework c) the integration of information theory and d) a reusable sensemaking method. This structured sensemaking framework is the first of its kind

    Data Mining in Promoting Flight Safety

    Get PDF
    The incredible rapid development to huge volumes of air travel, mainly because of jet airliners that appeared to the sky in the 1950s, created the need for systematic research for aviation safety and collecting data about air traffic. The structured data can be analysed easily using queries from databases and running theseresults through graphic tools. However, in analysing narratives that often give more accurate information about the case, mining tools are needed. The analysis of textual data with computers has not been possible until data mining tools have been developed. Their use, at least among aviation, is still at a moderate level. The research aims at discovering lethal trends in the flight safety reports. The narratives of 1,200 flight safety reports from years 1994 – 1996 in Finnish were processed with three text mining tools. One of them was totally language independent, the other had a specific configuration for Finnish and the third originally created for English, but encouraging results had been achieved with Spanish and that is why a Finnish test was undertaken, too. The global rate of accidents is stabilising and the situation can now be regarded as satisfactory, but because of the growth in air traffic, the absolute number of fatal accidents per year might increase, if the flight safety will not be improved. The collection of data and reporting systems have reached their top level. The focal point in increasing the flight safety is analysis. The air traffic has generally been forecasted to grow 5 – 6 per cent annually over the next two decades. During this period, the global air travel will probably double also with relatively conservative expectations of economic growth. This development makes the airline management confront growing pressure due to increasing competition, signify cant rise in fuel prices and the need to reduce the incident rate due to expected growth in air traffic volumes. All this emphasises the urgent need for new tools and methods. All systems provided encouraging results, as well as proved challenges still to be won. Flight safety can be improved through the development and utilisation of sophisticated analysis tools and methods, like data mining, using its results supporting the decision process of the executives.Lentoliikenne kasvoi huomattavasti 1950-luvulla pääasiassa suihkumatkustajakoneiden myötä, mikä aiheutti poikkeamatietojen järjestelmällisen keräämisen ja tutkimuksen tarpeen. Määrämuotoinen tieto voidaan helposti analysoida tietokantakyselyillä esittäen tulokset käyttäen graafisia työkaluja, mutta tekstianalyysiin, jonka avulla tapauksista saadaan usein tarkempia tietoja, tarvitaan louhintatyökaluja. Tekstimuotoisen tiedon automaattinen analysointi ei ole ollut mahdollista ennen louhintatyökalujen kehittämistä. Silti niiden käyttö, ainakin ilmailun piirissä, on edelleen vähäistä. Tutkimuksen tarkoituksena oli havaita vaarallisia kehityskulkuja lentoturvallisuusraporteissa. 1 200 lentoturvallisuusraportin selostusosiot vuosilta 1994 –1996 käsiteltiin kolmella tekstinlouhintatyökalulla. Yksi näistä oli täysin kieliriippumaton, toisessa oli lisäosa, jossa oli mahdollisuus käsitellä suomen kieltä ja kolmas oli rakennettu alun perin ainoastaan englanninkielisen tekstin louhintaan, mutta espanjan kielellä saavutettujen rohkaisevien tulosten pohjalta päätettiin kokeilla myös suomenkielistä tekstiä. Lento-onnettomuuksien määrä liikenteeseen nähden on vakiintumassa maailmanlaajuisesti katsottuna ja turvallisuustaso voidaan katsoa tyydyttäväksi. Kuitenkin liikenteen kasvaessa myös onnettomuuksien määrä lisääntyy vuosittain, mikäli lentoturvallisuutta ei kyetä parantamaan. Turvallisuustiedon kerääminen ja raportointijärjestelmät ovat jo saavuttaneet huippunsa. Analysoinnin parantaminen on avain lentoturvallisuuden parantamiseen. Lentoliikenteen on ennustettu kasvavan 5 – 6 prosenttia vuodessa seuraavien kahden vuosikymmenen ajan. Samana aikana lentoliikenne saattaa kaksinkertaistua jopa vaatimattomimpien talouskasvuennusteiden mukaan. Tällainen kehitys asettaa lentoliikenteen päättäjille yhä kasvavia paineita kiristyvän kilpailun, polttoaineiden hinnannousun ja liikenteen kasvun aiheuttaman onnettomuuksien määrän vähentämiseksi. Tämä korostaa uusien menetelmien ja työkalujen kiireellistä tarvetta. Kaikilla louhintajärjestelmillä saatiin rohkaisevia tuloksia mutta ne nostivat samalla esille haasteita, jotka tulisi vielä voittaa. Lentoturvallisuutta voidaan vielä parantaa käyttämällä tässä esille tuotuja analyysimenetelmiä ja –työkaluja kuten tiedonlouhintaa ja soveltamalla näin saatuja tuloksia johdon päätöksenteon tukena.Siirretty Doriast
    corecore