15,477 research outputs found

    Supporting polyrepresentation in a quantum-inspired geometrical retrieval framework

    Get PDF
    The relevance of a document has many facets, going beyond the usual topical one, which have to be considered to satisfy a user's information need. Multiple representations of documents, like user-given reviews or the actual document content, can give evidence towards certain facets of relevance. In this respect polyrepresentation of documents, where such evidence is combined, is a crucial concept to estimate the relevance of a document. In this paper, we discuss how a geometrical retrieval framework inspired by quantum mechanics can be extended to support polyrepresentation. We show by example how different representations of a document can be modelled in a Hilbert space, similar to physical systems known from quantum mechanics. We further illustrate how these representations are combined by means of the tensor product to support polyrepresentation, and discuss the case that representations of documents are not independent from a user point of view. Besides giving a principled framework for polyrepresentation, the potential of this approach is to capture and formalise the complex interdependent relationships that the different representations can have between each other

    Factory of realities: on the emergence of virtual spatiotemporal structures

    Full text link
    The ubiquitous nature of modern Information Retrieval and Virtual World give rise to new realities. To what extent are these "realities" real? Which "physics" should be applied to quantitatively describe them? In this essay I dwell on few examples. The first is Adaptive neural networks, which are not networks and not neural, but still provide service similar to classical ANNs in extended fashion. The second is the emergence of objects looking like Einsteinian spacetime, which describe the behavior of an Internet surfer like geodesic motion. The third is the demonstration of nonclassical and even stronger-than-quantum probabilities in Information Retrieval, their use. Immense operable datasets provide new operationalistic environments, which become to greater and greater extent "realities". In this essay, I consider the overall Information Retrieval process as an objective physical process, representing it according to Melucci metaphor in terms of physical-like experiments. Various semantic environments are treated as analogs of various realities. The readers' attention is drawn to topos approach to physical theories, which provides a natural conceptual and technical framework to cope with the new emerging realities.Comment: 21 p

    Quantum Interaction Approach in Cognition, Artificial Intelligence and Robotics

    Full text link
    The mathematical formalism of quantum mechanics has been successfully employed in the last years to model situations in which the use of classical structures gives rise to problematical situations, and where typically quantum effects, such as 'contextuality' and 'entanglement', have been recognized. This 'Quantum Interaction Approach' is briefly reviewed in this paper focusing, in particular, on the quantum models that have been elaborated to describe how concepts combine in cognitive science, and on the ensuing identification of a quantum structure in human thought. We point out that these results provide interesting insights toward the development of a unified theory for meaning and knowledge formalization and representation. Then, we analyze the technological aspects and implications of our approach, and a particular attention is devoted to the connections with symbolic artificial intelligence, quantum computation and robotics.Comment: 10 page

    A Quantum Many-body Wave Function Inspired Language Modeling Approach

    Full text link
    The recently proposed quantum language model (QLM) aimed at a principled approach to modeling term dependency by applying the quantum probability theory. The latest development for a more effective QLM has adopted word embeddings as a kind of global dependency information and integrated the quantum-inspired idea in a neural network architecture. While these quantum-inspired LMs are theoretically more general and also practically effective, they have two major limitations. First, they have not taken into account the interaction among words with multiple meanings, which is common and important in understanding natural language text. Second, the integration of the quantum-inspired LM with the neural network was mainly for effective training of parameters, yet lacking a theoretical foundation accounting for such integration. To address these two issues, in this paper, we propose a Quantum Many-body Wave Function (QMWF) inspired language modeling approach. The QMWF inspired LM can adopt the tensor product to model the aforesaid interaction among words. It also enables us to reveal the inherent necessity of using Convolutional Neural Network (CNN) in QMWF language modeling. Furthermore, our approach delivers a simple algorithm to represent and match text/sentence pairs. Systematic evaluation shows the effectiveness of the proposed QMWF-LM algorithm, in comparison with the state of the art quantum-inspired LMs and a couple of CNN-based methods, on three typical Question Answering (QA) datasets.Comment: 10 pages,4 figures,CIK
    • …
    corecore