16,599 research outputs found

    Humanoid Theory Grounding

    Get PDF
    In this paper we consider the importance of using a humanoid physical form for a certain proposed kind of robotics, that of theory grounding. Theory grounding involves grounding the theory skills and knowledge of an embodied artificially intelligent (AI) system by developing theory skills and knowledge from the bottom up. Theory grounding can potentially occur in a variety of domains, and the particular domain considered here is that of language. Language is taken to be another “problem space” in which a system can explore and discover solutions. We argue that because theory grounding necessitates robots experiencing domain information, certain behavioral-form aspects, such as abilities to socially smile, point, follow gaze, and generate manual gestures, are necessary for robots grounding a humanoid theory of language

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    MPC-based humanoid pursuit-evasion in the presence of obstacles

    Get PDF
    We consider a pursuit-evasion problem between humanoids in the presence of obstacles. In our scenario, the pursuer enters the safety area of the evader headed for collision, while the latter executes a fast evasive motion. Control schemes are designed for both the pursuer and the evader. They are structurally identical, although the objectives are different: the pursuer tries to align its direction of motion with the line- of-sight to the evader, whereas the evader tries to move in a direction orthogonal to the line-of-sight to the pursuer. At the core of the control architecture is a Model Predictive Control scheme for generating a stable gait. This allows for the inclusion of workspace obstacles, which we take into account at two levels: during the determination of the footsteps orientation and as an explicit MPC constraint. We illustrate the results with simulations on NAO humanoids

    Teaching humanoid robotics by means of human teleoperation through RGB-D sensors

    Get PDF
    This paper presents a graduate course project on humanoid robotics offered by the University of Padova. The target is to safely lift an object by teleoperating a small humanoid. Students have to map human limbs into robot joints, guarantee the robot stability during the motion, and teleoperate the robot to perform the correct movement. We introduce the following innovative aspects with respect to classical robotic classes: i) the use of humanoid robots as teaching tools; ii) the simplification of the stable locomotion problem by exploiting the potential of teleoperation; iii) the adoption of a Project-Based Learning constructivist approach as teaching methodology. The learning objectives of both course and project are introduced and compared with the students\u2019 background. Design and constraints students have to deal with are reported, together with the amount of time they and their instructors dedicated to solve tasks. A set of evaluation results are provided in order to validate the authors\u2019 purpose, including the students\u2019 personal feedback. A discussion about possible future improvements is reported, hoping to encourage further spread of educational robotics in schools at all levels

    Automatic Gain Tuning of a Momentum Based Balancing Controller for Humanoid Robots

    Full text link
    This paper proposes a technique for automatic gain tuning of a momentum based balancing controller for humanoid robots. The controller ensures the stabilization of the centroidal dynamics and the associated zero dynamics. Then, the closed-loop, constrained joint space dynamics is linearized and the controller's gains are chosen so as to obtain desired properties of the linearized system. Symmetry and positive definiteness constraints of gain matrices are enforced by proposing a tracker for symmetric positive definite matrices. Simulation results are carried out on the humanoid robot iCub.Comment: Accepted at IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS). 201
    • …
    corecore