109 research outputs found

    Fully CMOS Memristor Based Chaotic Circuit

    Get PDF
    This paper demonstrates the design of a fully CMOS chaotic circuit consisting of only DDCC based memristor and inductance simulator. Our design is composed of these active blocks using CMOS 0.18 µm process technology with symmetric ±1.25 V supply voltages. A new single DDCC+ based topology is used as the inductance simulator. Simulation results verify that the design proposed satisfies both memristor properties and the chaotic behavior of the circuit. Simulations performed illustrate the success of the proposed design for the realization of CMOS based chaotic applications

    Nonlinear Dynamics of Chaotic Attractor of Chua Circuit and Its Application for Secure Communication

    Get PDF
    The Chua circuit is among the simplest non-linear circuits that shows most complex dynamical behavior, including chaos which exhibits a variety of bifurcation phenomena and attractors. In this paper, Chua attractor's chaotic oscillator, synchronization and masking communication circuits were designed and simulated. The electronic circuit oscilloscope outputs of the realized Chua system is also presented. Simulation and oscilloscope outputs are used to illustrate the accuracy of the designed and realized Chua chaotic oscillator circuits. The Chua system is addressed suitable for chaotic synchronization circuits and chaotic masking communication circuits using Matlab® and MultiSIM® software. Simulation results are used to visualize and illustrate the effectiveness of Chua chaotic system in synchronization and application of secure communication.  Keywords: chua nonlinear circuit, chaotic attractor, chaotic synchronization, secure communication

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Simple 4d – Hyperchaotic Canonical Van der pol Duffing Oscillator using Current Feedback Op-Amp

    Get PDF
    In this paper, in order to show some interesting phenomena of fourth-order hyperchaotic Canonical Van der Pol Duffing oscillator circuit with a smooth cubic nonlinearity, different kinds of attractors, time waveforms and corresponding Lyapunov exponent spectra of systems are presented, respectively. The perturbation transforms an unpredictable hyperchaotic behavior into a predictable hyperchaotic or periodic motion via stabilization of unstable, aperiodic, or periodic orbits of the strange hyperchaotic attractor. One advantage of the method is its robustness against noise. A theoretical analysis of the circuit equations is presented, along with experimental simulation and numerical results

    Chua's circuit:synchronisation

    Get PDF

    CHAOS SYNCHRONIZATION USING SUPER-TWISTING SLIDING MODE CONTROL APPLIED ON CHUA’S CIRCUIT

    Get PDF
    Chua’s circuit is the classic chaotic system and the most widely used in serval areas due to its potential for secure communication. However, developing an accurate chaos control strategy is one of the most challenging works for Chua’s circuit. This study proposes a new application of super twisting algorithm (STC) based on sliding mode control (SMC) to eliminate or synchronize the chaos behavior in the circuit. Therefore, the proposed control strategy is robust against uncertainty and effectively regulates the system with a good regulation tracking task. Using the Lyapunov stability, the property of asymptotical stability is verified. The whole of the system including the (control strategy, and Chua’s circuit) is implemented under a suitable test setup based on dSpace1104 to validate the effectiveness of our proposed control scheme. The experimental results show that the proposed control method can effectively eliminate or synchronize the chaos in the Chua's circuit

    New realization of Chua's circuit and verification of chaos by harmonic balance analysis

    Get PDF
    Chua's circuit, which consists of two capacitors, one inductor, two resistors, one linear voltage-controlled voltage source (VCVS) and voltage-controlled current source (VCCS) type non-linear element has been realized by operational amplifiers. Various dynamical phenomena such as periodic orbit with periods T, 2T, and 4T, single scroll and double scroll similar to the Lorenz attractor have been observed experimentally by changing only the resistance value of the linear resistor R6. The experimental observations have been confirmed by computer simulations and also using harmonic balance analysis

    Chua's Circuit in Spread Spectrum Communication Systems

    Get PDF
    Communication system via chaotic modulations is demonstrated. It contains the well-known chaotic circuits as its basic elements - Chua's circuits. The proposed system has some standard properties of spread spectrum communication. The following advantage is found in simulations: a) Transmitted signals have broad spectra. b) Secure communications are possible in the sense that the better parameter matching is required in order to recover the signal. c) The circuit structure of the communication system is most simple and communication systems are easily built at a small outlay. Finally computer simulations are given to examine the validity of this system

    Control techniques for chaotic dynamical systems

    Get PDF

    Chaos via a piecewise-linear switch ed-capacitor circuit

    Get PDF
    A nonlinear switched-capacitor circuit that generates chaotic signals is reported. The circuit is described by a first-order piecewise-linear discrete equation that exhibits a chaotic dynamics. Experimental results illustrating the circuit performance and its use as a noise generator are included.Comisión Interministerial de Ciencia y Tecnología 3467-8
    corecore