45,347 research outputs found

    Introduction to Evolutionary Algorithms

    Get PDF
    Real-world has many optimization scenarios with multiple constraints and objective functions that are discontinuous, nonlinear, non-convex, and multi-modal in nature. Also, the optimization problems are multi-dimensional with mixed types of variables like integer, real, discrete, binary, and having a different range of values which demands normalization. Hence, the search space of the problem cannot be smooth. Evolutionary algorithms have started gaining attention and have been employed for computational processes to solve complex engineering problems. Because it has become an instrument for research scientists and engineers who need to apply the supremacy of the theory of evolution to shape any optimization-based research problems and articles. In this chapter, there is a comprehensive introduction to the optimization field with the state-of-the-art in evolutionary computation. Though many books have described such areas of optimization in any form as evolution strategies, genetic programming, genetic algorithms, and evolutionary programming, evolutionary algorithms, that is, evolutionary computation is remarkable for considering it to discuss in detail as a general class

    Integrating Evolutionary Computation with Neural Networks

    Get PDF
    There is a tremendous interest in the development of the evolutionary computation techniques as they are well suited to deal with optimization of functions containing a large number of variables. This paper presents a brief review of evolutionary computing techniques. It also discusses briefly the hybridization of evolutionary computation and neural networks and presents a solution of a classical problem using neural computing and evolutionary computing technique

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Evolutionary Computation in High Energy Physics

    Get PDF
    Evolutionary Computation is a branch of computer science with which, traditionally, High Energy Physics has fewer connections. Its methods were investigated in this field, mainly for data analysis tasks. These methods and studies are, however, less known in the high energy physics community and this motivated us to prepare this lecture. The lecture presents a general overview of the main types of algorithms based on Evolutionary Computation, as well as a review of their applications in High Energy Physics.Comment: Lecture presented at 2006 Inverted CERN School of Computing; to be published in the school proceedings (CERN Yellow Report
    • 

    corecore