186,687 research outputs found

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    Causal inference in drug discovery and development

    Get PDF
    To discover new drugs is to seek and to prove causality. As an emerging approach leveraging human knowledge and creativity, data, and machine intelligence, causal inference holds the promise of reducing cognitive bias and improving decision-making in drug discovery. Although it has been applied across the value chain, the concepts and practice of causal inference remain obscure to many practitioners. This article offers a nontechnical introduction to causal inference, reviews its recent applications, and discusses opportunities and challenges of adopting the causal language in drug discovery and development

    Introduction to the Symposium: Causal Inference and Public Health

    Get PDF
    Assessing the extent to which public health research findings can be causally interpreted continues to be a critical endeavor. In this symposium, we invited several researchers to review issues related to causal inference in social epidemiology and environmental science and to discuss the importance of external validity in public health. Together, this set of articles provides an integral overview of the strengths and limitations of applying causal inference frameworks and related approaches to a variety of public health problems, for both internal and external validity

    A Primer on Causality in Data Science

    Get PDF
    Many questions in Data Science are fundamentally causal in that our objective is to learn the effect of some exposure, randomized or not, on an outcome interest. Even studies that are seemingly non-causal, such as those with the goal of prediction or prevalence estimation, have causal elements, including differential censoring or measurement. As a result, we, as Data Scientists, need to consider the underlying causal mechanisms that gave rise to the data, rather than simply the pattern or association observed in those data. In this work, we review the 'Causal Roadmap' of Petersen and van der Laan (2014) to provide an introduction to some key concepts in causal inference. Similar to other causal frameworks, the steps of the Roadmap include clearly stating the scientific question, defining of the causal model, translating the scientific question into a causal parameter, assessing the assumptions needed to express the causal parameter as a statistical estimand, implementation of statistical estimators including parametric and semi-parametric methods, and interpretation of our findings. We believe that using such a framework in Data Science will help to ensure that our statistical analyses are guided by the scientific question driving our research, while avoiding over-interpreting our results. We focus on the effect of an exposure occurring at a single time point and highlight the use of targeted maximum likelihood estimation (TMLE) with Super Learner.Comment: 26 pages (with references); 4 figure

    Aspects of causal inference.

    Get PDF
    Observational studies differ from experimental studies in that assignment of subjects to treatments is not randomized but rather occurs due to natural mechanisms, which are usually hidden from researchers. Yet objectives of the two studies are frequently the same: identify the causal – rather than merely associational – relationship between some treatment or exposure and an outcome. The statistical issues that arise in properly analyzing observational data for this goal are numerous and fascinating, and these issues are encompassed in the domain of causal inference. The research presented in this dissertation explores several distinct aspects of causal inference. This dissertation is divided into four chapters. Chapter One gives an introduction to major concepts, underlying assumptions, and analytical frameworks encountered in the domain of causal inference. The next three chapters describe extensive research projects that are linked together by those threads. Chapter Two deals with propensity score techniques and, more specifically, how to specify the propensity score model to achieve the best treatment effect estimates. This chapter not only provides a theoretical proof showing that one particular type of specification is best, but also demonstrates an original method for applying that result. The method presented in Chapter Three has a similar purpose – obtaining precise and accurate estimates of causal effects – but views the challenge through a Bayesian, rather than a frequentist, lens. Here, a hierarchical Bayesian model is developed that is grounded in the framework of causal inference. While Chapters Two and Three focus on scenarios involving causal inference from observational data, Chapter Four presents a method that has been designed to apply equally well to experimental data. The intent of the research here is to provide a method for identifying subgroups of the population in which the treatment effect differs from the overall population average treatment effect. Maintaining a central theme of causal inference, the research focuses on avoiding confounding bias while identifying effect modifiers that characterize the subgroups. In all, this dissertation is intended to provide views of causal inference concepts from several distinct angles, demonstrating the complexity and richness of this domain

    Applications of Causality and Causal Inference in Software Engineering

    Full text link
    Causal inference is a study of causal relationships between events and the statistical study of inferring these relationships through interventions and other statistical techniques. Causal reasoning is any line of work toward determining causal relationships, including causal inference. This paper explores the relationship between causal reasoning and various fields of software engineering. This paper aims to uncover which software engineering fields are currently benefiting from the study of causal inference and causal reasoning, as well as which aspects of various problems are best addressed using this methodology. With this information, this paper also aims to find future subjects and fields that would benefit from this form of reasoning and to provide that information to future researchers. This paper follows a systematic literature review, including; the formulation of a search query, inclusion and exclusion criteria of the search results, clarifying questions answered by the found literature, and synthesizing the results from the literature review. Through close examination of the 45 found papers relevant to the research questions, it was revealed that the majority of causal reasoning as related to software engineering is related to testing through root cause localization. Furthermore, most causal reasoning is done informally through an exploratory process of forming a Causality Graph as opposed to strict statistical analysis or introduction of interventions. Finally, causal reasoning is also used as a justification for many tools intended to make the software more human-readable by providing additional causal information to logging processes or modeling languages
    • …
    corecore