98,510 research outputs found

    Introduction to Categories and Categorical Logic

    Get PDF
    The aim of these notes is to provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The notes are based on a lecture course given at Oxford over the past few years. They contain numerous exercises, and hopefully will prove useful for self-study by those seeking a first introduction to the subject, with fairly minimal prerequisites. The coverage is by no means comprehensive, but should provide a good basis for further study; a guide to further reading is included. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions. An Appendix contains a summary of what we will need, and it may be useful to review this first. In addition, some prior exposure to abstract algebra - vector spaces and linear maps, or groups and group homomorphisms - would be helpful.Comment: 96 page

    Categorical structures for deduction

    Get PDF
    We begin by introducing categorized judgemental theories and their calculi as a general framework to present and study deductive systems. As an exemplification of their expressivity, we approach dependent type theory and first-order logic as special kinds of categorized judgemental theories. We believe our analysis sheds light on both the topics, providing a new point of view. In the case of type theory, we provide an abstract definition of type constructor featuring the usual formation, introduction, elimination and computation rules. For first-order logic we offer a deep analysis of structural rules, describing some of their properties, and putting them into context. We then put one of the main constructions introduced, namely that of categorized judgemental dependent type theories, to the test: we frame it in the general context of categorical models for dependent types, describe a few examples, study its properties, and use it to model subtyping and as a tool to prove intrinsic properties hidden in other models. Somehow orthogonally, then, we show a different side as to how categories can help the study of deductive systems: we transport a known model from set-based categories to enriched categories, and use the information naturally encoded into it to describe a theory of fuzzy types. We recover structural rules, observe new phenomena, and study different possible enrichments and their interpretation. We open the discussion to include different takes on the topic of definitional equality

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    From Simple to Complex and Ultra-complex Systems:\ud A Paradigm Shift Towards Non-Abelian Systems Dynamics

    Get PDF
    Atoms, molecules, organisms distinguish layers of reality because of the causal links that govern their behavior, both horizontally (atom-atom, molecule-molecule, organism-organism) and vertically (atom-molecule-organism). This is the first intuition of the theory of levels. Even if the further development of the theory will require imposing a number of qualifications to this initial intuition, the idea of a series of entities organized on different levels of complexity will prove correct. Living systems as well as social systems and the human mind present features remarkably different from those characterizing non-living, simple physical and chemical systems. We propose that super-complexity requires at least four different categorical frameworks, provided by the theories of levels of reality, chronotopoids, (generalized) interactions, and anticipation

    From Simple to Complex and Ultra-complex Systems:\ud A Paradigm Shift Towards Non-Abelian Systems Dynamics

    Get PDF
    Atoms, molecules, organisms distinguish layers of reality because of the causal links that govern their behavior, both horizontally (atom-atom, molecule-molecule, organism-organism) and vertically (atom-molecule-organism). This is the first intuition of the theory of levels. Even if the further development of the theory will require imposing a number of qualifications to this initial intuition, the idea of a series of entities organized on different levels of complexity will prove correct. Living systems as well as social systems and the human mind present features remarkably different from those characterizing non-living, simple physical and chemical systems. We propose that super-complexity requires at least four different categorical frameworks, provided by the theories of levels of reality, chronotopoids, (generalized) interactions, and anticipation

    Condition/Decision Duality and the Internal Logic of Extensive Restriction Categories

    Get PDF
    In flowchart languages, predicates play an interesting double role. In the textual representation, they are often presented as conditions, i.e., expressions which are easily combined with other conditions (often via Boolean combinators) to form new conditions, though they only play a supporting role in aiding branching statements choose a branch to follow. On the other hand, in the graphical representation they are typically presented as decisions, intrinsically capable of directing control flow yet mostly oblivious to Boolean combination. While categorical treatments of flowchart languages are abundant, none of them provide a treatment of this dual nature of predicates. In the present paper, we argue that extensive restriction categories are precisely categories that capture such a condition/decision duality, by means of morphisms which, coincidentally, are also called decisions. Further, we show that having these categorical decisions amounts to having an internal logic: Analogous to how subobjects of an object in a topos form a Heyting algebra, we show that decisions on an object in an extensive restriction category form a De Morgan quasilattice, the algebraic structure associated with the (three-valued) weak Kleene logic K3w\mathbf{K}^w_3. Full classical propositional logic can be recovered by restricting to total decisions, yielding extensive categories in the usual sense, and confirming (from a different direction) a result from effectus theory that predicates on objects in extensive categories form Boolean algebras. As an application, since (categorical) decisions are partial isomorphisms, this approach provides naturally reversible models of classical propositional logic and weak Kleene logic.Comment: 19 pages, including 6 page appendix of proofs. Accepted for MFPS XXX
    • …
    corecore