1,014 research outputs found

    Introduction of a Triple Prime Symmetric Key Block Cipher

    Full text link
    This paper proposes to put forward an innovative algorithm for symmetric key block cipher named as "Triple Prime Symmetric Key Block Cipher with Variable Key-Spaces (TPSKBCVK)" that employs triple prime integers as private key-spaces of varying lengths to encrypt data files. Principles of modular arithmetic have been elegantly used in the proposed idea of the cipher. Depending on observations of the results of implementation of the proposed cipher on a set of real data files of several types, all results are registered and analyzed. The strength of the underlying design of the cipher and the liberty of using a long key-space expectedly makes it reasonably non-susceptible against possible cryptanalytic intrusions. As a future scope of the work, it is intended to formulate and employ an improved scheme that will use a carrier media (image or multimedia data file) for a secure transmission of the private keys

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table

    Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices

    Get PDF
    Networks are evolving toward a ubiquitous model in which heterogeneous devices are interconnected. Cryptographic algorithms are required for developing security solutions that protect network activity. However, the computational and energy limitations of network devices jeopardize the actual implementation of such mechanisms. In this paper, we perform a wide analysis on the expenses of launching symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curves cryptography and pairing based cryptography on personal agendas, and compare them with the costs of basic operating system functions. Results show that although cryptographic power costs are high and such operations shall be restricted in time, they are not the main limiting factor of the autonomy of a device

    Algebraic properties of generalized Rijndael-like ciphers

    Full text link
    We provide conditions under which the set of Rijndael functions considered as permutations of the state space and based on operations of the finite field \GF (p^k) (p2p\geq 2 a prime number) is not closed under functional composition. These conditions justify using a sequential multiple encryption to strengthen the AES (Rijndael block cipher with specific block sizes) in case AES became practically insecure. In Sparr and Wernsdorf (2008), R. Sparr and R. Wernsdorf provided conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (2^k) is equal to the alternating group on the state space. In this paper we provide conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (p^k) (p2p\geq 2) is equal to the symmetric group or the alternating group on the state space.Comment: 22 pages; Prelim0

    Symmetric Encryption Algorithms: Review and Evaluation Study

    Get PDF
    The increased exchange of data over the Internet in the past two decades has brought data security and confidentiality to the fore front. Information security can be achieved by implementing encryption and decryption algorithms to ensure data remains secure and confidential, especially when transmitted over an insecure communication channel. Encryption is the method of coding information to prevent unauthorized access and ensure data integrity and confidentiality, whereas the reverse process is known as decryption. All encryption algorithms aim to secure data, however, their performance varies according to several factors such as file size, type, complexity, and platform used. Furthermore, while some encryption algorithms outperform others, they have been proven to be vulnerable against certain attacks. In this paper, we present a general overview of common encryption algorithms   and explain their inner workings. Additionally, we select ten different symmetric encryption algorithms and conduct a simulation in Java to test their performance. The algorithms we compare are: AES, BLOWFISH, RC2, RC4, RC6, DES, DESede, SEED, XTEA, and IDEA. We present the results of our simulation in terms of encryption speed, throughput, and CPU utilization rate for various file sizes ranging from 1MB to 1GB. We further analyze our results for all measures that have been tested, taking into account the level of security they provide

    Design of a Data Encryption Test-Bed Used to Analyze Encryption Processing Overhead

    Get PDF
    Data security is one of the most pressing issues faced by the organizations today. Unauthorized access to confidential information corresponding to employees/customers like SSN (Social Security numbers), financial information, health records, birth dates can be compromised both to the individual customers involved and the company withholding the data. The problem has become immense, approximately 260 million records were compromised since 2005 and companies, states and countries have reacted by mandating that industries should stringently follow the best security practices, including encryption and decryption of data. Also, the costs associated with data threats are quite increasing (Whitfield & Susan, 2007). Businesses that use strong encryption methodologies in their mobile devices, computers, cloud systems, other locations might not gain 100 % protection from dangerous hackers, but they can decrease their vulnerability to such attacks and thereby the potential of financial losses. Data encryption is the method of converting data in a computer or any communication system making it unintelligible in a way that the data can be reversed only by the authorized people accessing the original data. The primary goal is to safeguard the confidentiality of data, but integrity checks are also provided by the technique in various forms of authentication message codes. For instance, digital signature schemes are also fundamentals of encryption. The purpose of it is to ensure the authenticity of the identity of the receiver and sender. With an increasing awareness of security threats, many of the current companies are using cryptographic techniques for ensuring data security. Many of the companies like Amazon, Apple, AT&T and Comcast are using encryption techniques for securing the information. While there are a many encryption and decryption techniques available today, there is an obvious requirement for the current companies to find and choose the best reliable cryptographic techniques for securing their data. A performance test of various algorithms is needed to bring up the best technique. This research paper deals with the implementation of different cryptographic algorithms with a programming language called JAVA. It involves designing a graphical user interface (GUI) where sample input can be entered, common algorithms used to encrypt and decrypt the input can be selected. A mechanism for building a test bed for comparing the performances of the implemented algorithms is designed to calculate the encryption processing overhead

    Encryption in the past, present, and future : an honors thesis (HONRS 499)

    Get PDF
    To ensure the confidentiality and integrity of data in storage and transit, various cryptography systems have been developed. Each of these systems has individual strengths and weaknesses. As the number of computer security threats increases, it becomes even more crucial to use methods of concealing the true meaning of data. This paper will look to strike a balance in providing details of how each of the methods works without explaining in so much detail that a casual reader will be completely lost. It is the goal of this paper to enlighten readers about the cryptography systems all around them and help them to gain a better understanding of how these systems work. The paper will then conclude with a brief discussion of what future advancements are likely to mean to current cryptography systems.Honors CollegeThesis (B.?

    A Comparative Case study on Different Parameters of Blowfish Algorithm with other Cryptographic Algorithms

    Get PDF
    As we use our data of high value or confidential one then we are in need of protection. An appropriate solution is always needed to maintain the significance, accuracy & sensitivity of data. So, now in this digital era security and privacy has become an important issue. So, throughout this paper we will have a comparative study cum analysis of cryptographic algorithms like Blowfish, DES, AES, and Diffie Hellman
    corecore