24 research outputs found

    Human inspired humanoid robots control architecture

    Get PDF
    This PhD Thesis tries to present a different point of view when talking about the development of control architectures for humanoid robots. Specifically, this Thesis is focused on studying the human postural control system as well as on the use of this knowledge to develop a novel architecture for postural control in humanoid robots. The research carried on in this thesis shows that there are two types of components for postural control: a reactive one, and other predictive or anticipatory. This work has focused on the development of the second component through the implementation of a predictive system complementing the reactive one. The anticipative control system has been analysed in the human case and it has been extrapolated to the architecture for controlling the humanoid robot TEO. In this way, its different components have been developed based on how humans work without forgetting the tasks it has been designed for. This control system is based on the composition of sensorial perceptions, the evaluation of stimulus through the use of the psychophysics theory of the surprise, and the creation of events that can be used for activating some reaction strategies (synergies) The control system developed in this Thesis, as well as the human being does, processes information coming from different sensorial sources. It also composes the named perceptions, which depend on the type of task the postural control acts over. The value of those perceptions is obtained using bio-inspired evaluation techniques of sensorial inference. Once the sensorial input has been obtained, it is necessary to process it in order to foresee possible disturbances that may provoke an incorrect performance of a task. The system developed in this Thesis evaluates the sensorial information, previously transformed into perceptions, through the use of the “Surprise Theory”, and it generates some events called “surprises” used for predicting the evolution of a task. Finally, the anticipative system for postural control can compose, if necessary, the proper reactions through the use of predefined movement patterns called synergies. Those reactions can complement or substitute completely the normal performance of a task. The performance of the anticipative system for postural control as well as the performance of each one of its components have been tested through simulations and the application of the results in the humanoid robot TEO from the RoboticsLab research group in the Systems Engineering and Automation Department from the Carlos III University of Madrid. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Esta Tesis Doctoral pretende aportar un punto de vista diferente en el desarrollo de arquitecturas de control para robots humanoides. En concreto, esta Tesis se centra en el estudio del sistema de control postural humano y en la aplicación de este conocimiento en el desarrollo de una nueva arquitectura de control postural para robots humanoides. El estudio realizado en esta Tesis pone de manifiesto la existencia de una componente de control postural reactiva y otra predictiva o anticipativa. Este trabajo se ha centrado en el desarrollo de la segunda componente mediante la implementación de un sistema predictivo que complemente al sistema reactivo. El sistema de control anticipativo ha sido estudiado en el caso humano y extrapolado para la arquitectura de control del robot humanoide TEO. De este modo, sus diferentes componentes han sido desarrollados inspirándose en el funcionamiento humano y considerando las tareas para las que dicho robot ha sido concebido. Dicho sistema está basado en la composición de percepciones sensoriales, la evaluación de los estímulos mediante el uso de la teoría psicofísica de la sorpresa y la generación de eventos que sirvan para activar estrategias de reacción (sinergias). El sistema de control desarrollado en esta Tesis, al igual que el ser humano, procesa información de múltiples fuentes sensoriales y compone las denominadas percepciones, que dependen del tipo de tarea sobre la que actúa el control postural. El valor de estas percepciones es obtenido utilizando técnicas de evaluación bioinspiradas de inferencia sensorial. Una vez la entrada sensorial ha sido obtenida, es necesario procesarla para prever posibles perturbaciones que puedan ocasionar una incorrecta realización de una tarea. El sistema desarrollado en esta Tesis evalúa la información sensorial, previamente transformada en percepciones, mediante la ‘Teoría de la Sorpresa’ y genera eventos llamados ‘sorpresas’ que sirven para predecir la evolución de una tarea. Por último, el sistema anticipativo de control postural puede componer, si fuese necesario, las reacciones adecuadas mediante el uso de patrones de movimientos predefinidos llamados sinergias. Dichas reacciones pueden complementar o sustituir por completo la ejecución normal de una tarea. El funcionamiento del sistema anticipativo de control postural y de cada uno de sus componentes ha sido probado tanto por medio de simulaciones como por su aplicación en el robot humanoide TEO del grupo de investigación RoboticsLab en el Departamento de Ingeniería de Sistemas y Automática de la Universidad Carlos III de Madrid

    Motion Planning : from Digital Actors to Humanoid Robots

    Get PDF
    Le but de ce travail est de développer des algorithmes de planification de mouvement pour des figures anthropomorphes en tenant compte de la géométrie, de la cinématique et de la dynamique du mécanisme et de son environnement. Par planification de mouvement, on entend la capacité de donner des directives à un niveau élevé et de les transformer en instructions de bas niveau qui produiront une séquence de valeurs articulaires qui reproduissent les mouvements humains. Ces instructions doivent considérer l'évitement des obstacles dans un environnement qui peut être plus au moins contraint. Ceci a comme consequence que l'on peut exprimer des directives comme “porte ce plat de la table jusqu'ac'estu coin du piano”, qui seront ensuite traduites en une série de buts intermédiaires et de contraintes qui produiront les mouvements appropriés des articulations du robot, de façon a effectuer l'action demandée tout en evitant les obstacles dans la chambre. Nos algorithmes se basent sur l'observation que les humains ne planifient pas des mouvements précis pour aller à un endroit donné. On planifie grossièrement la direction de marche et, tout en avançant, on exécute les mouvements nécessaires des articulations afin de nous mener à l'endroit voulu. Nous avons donc cherché à concevoir des algorithmes au sein d'un tel paradigme, algorithmes qui: 1. Produisent un chemin sans collision avec une version réduite du mécanisme et qui le mènent au but spécifié. 2. Utilisent les contrôleurs disponibles pour générer un mouvement qui assigne des valeurs à chacune des articulations du mécanisme pour suivre le chemin trouvé précédemment. 3. Modifient itérativement ces trajectoires jusqu'à ce que toutes les contraintes géométriques, cinématiques et dynamiques soient satisfaites. Dans ce travail nous appliquons cette approche à trois étages au problème de la planification de mouvements pour des figures anthropomorphes qui manipulent des objets encombrants tout en marchant. Dans le processus, plusieurs problèmes intéressants, ainsi que des propositions pour les résoudre, sont présentés. Ces problèmes sont principalement l'évitement tri-dimensionnel des obstacles, la manipulation des objets à deux mains, la manipulation coopérative des objets et la combinaison de comportements hétérogènes. La contribution principale de ce travail est la modélisation du problème de la génération automatique des mouvements de manipulation et de locomotion. Ce modèle considère les difficultés exprimées ci dessus, dans les contexte de mécanismes bipèdes. Trois principes fondent notre modèle: une décomposition fonctionnelle des membres du mécanisme, un modèle de manipulation coopérative et, un modéle simplifié des facultés de déplacement du mécanisme dans son environnement.Ce travail est principalement et surtout, un travail de synthèse. Nous nous servons des techniques disponibles pour commander la locomotion des mécanismes bipèdes (contrôleurs) provenant soit de l'animation par ordinateur, soit de la robotique humanoïde, et nous les relions dans un planificateur des mouvements original. Ce planificateur de mouvements est agnostique vis-à-vis du contrôleur utilisé, c'est-à-dire qu'il est capable de produire des mouvements libres de collision avec n'importe quel contrôleur tandis que les entrées et sorties restent compatibles. Naturellement, l'exécution de notre planificateur dépend en grand partie de la qualité du contrôleur utilisé. Dans cette thèse, le planificateur de mouvement est relié à différents contrôleurs et ses bonnes performances sont validées avec des mécanismes différents, tant virtuels que physiques. Ce travail à été fait dans le cadre des projets de recherche communs entre la France, la Russie et le Japon, où nous avons fourni le cadre de planification de mouvement à ses différents contrôleurs. Plusieurs publications issues de ces collaborations ont été présentées dans des conférences internationales. Ces résultats sont compilés et présentés dans cette thèse, et le choix des techniques ainsi que les avantages et inconvénients de notre approche sont discutés. ABSTRACT : The goal of this work is to develop motion planning algorithms for human-like figures taking into account the geometry, kinematics and dynamics of the mechanism and its environment. By motion planning it is understood the ability to specify high-level directives and transform them into low-level instructions for the articulations of the human-like figure. This is usually done while considering obstacle avoidance within the environment. This results in one being able to express directives as “carry this plate from the table to the piano corner” and have them translate into a series of goals and constraints that result in the pertinent motions from the robot's articulations in such a way as to carry out the action while avoiding collisions with the obstacles in the room. Our algorithms are based on the observation that humans do not plan their exact motions when getting to a location. We roughly plan our direction and, as we advance, we execute the motions needed to get to the desired place. This has led us to design algorithms that: 1. Produce a rough collision free path that takes a simplified model of the mechanism to the desired location. 2. Use available controllers to generate a trajectory that assigns values to each of the mechanism's articulations to follow the path. 3. Modify iteratively these trajectories until all the geometric, kinematic and dynamic constraints of the problem are satisfied.Throughout this work, we apply this three-stage approach with the problem of generating motions for human-like figures that manipulate bulky objects while walking. In the process, several interesting problems and their solution are brought into focus. These problems are, three- imensional collision avoidance, two-hand object manipulation, cooperative manipulation among several characters or robots and the combination of different behaviors. The main contribution of this work is the modeling of the automatic generation of cooperative manipulation motions. This model considers the above difficulties, all in the context of bipedal walking mechanisms. Three principles inform the model: a functional decomposition of the mechanism's limbs, a model for cooperative manipulation and, a simplified model to represent the mechanism when generating the rough path. This work is mainly and above all, one of synthesis. We make use of available techniques for controlling locomotion of bipedal mechanisms (controllers), from the fields of computer graphics and robotics, and connect them to a novel motion planner. This motion planner is controller-agnostic, that is, it is able to produce collision-free motions with any controller, despite whatever errors introduced by the controller itself. Of course, the performance of our motion planner depends on the quality of the used controller. In this thesis, the motion planner, connected to different controllers, is used and tested in different mechanisms, both virtual and physical. This in the context of different research projects in France, Russia and Japan, where we have provided the motion planning framework to their controllers. Several papers in peer-reviewed international conferences have resulted from these collaborations. The present work compiles these results and provides a more comprehensive and detailed depiction of the system and its benefits, both when applied to different mechanisms and compared to alternative approache

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children
    corecore