5 research outputs found

    Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow

    Get PDF
    In this paper we combine the Parareal parallel-in-time method together with spatial parallelization and investigate this space-time parallel scheme by means of solving the three-dimensional incompressible Navier-Stokes equations. Parallelization of time stepping provides a new direction of parallelization and allows to employ additional cores to further speed up simulations after spatial parallelization has saturated. We report on numerical experiments performed on a Cray XE6, simulating a driven cavity flow with and without obstacles. Distributed memory parallelization is used in both space and time, featuring up to 2,048 cores in total. It is confirmed that the space-time-parallel method can provide speedup beyond the saturation of the spatial parallelization

    Through thickness air permeability and thermal conductivity analysis for textile materials

    Get PDF
    Woven fabrics have found enormous application in our daily life and in industry because of their flexibility, strength and permeability. The aim of this work was to create a general model for through thickness air permeability and thermal conductivity for different types of textile fabrics because of their applications in industries and everyday life. An analytical model to predict through thickness air permeability was developed. The objective was to create a model which will take into consideration the two primary mechanisms of air flow in fabrics: through the gaps between yarns and through the yarns. Through thickness air permeability was measured according to British Standard BS EN ISO 9237: 1995. Several fabrics were tested including plain weave, twill weave and satin weave fabrics. The analytical model is a combination Kulichenko and Van Langenhove's analytical model which predicts the permeability through gaps between yams with Gebart's model to predict permeability within yams. Analytical predictions were compared to the experimental data. Computational modelling of through thickness air permeability using Computational Fluid Dynamics CFD software is presented in this thesis. The Polymer Composites Research Group in the University of Nottingham has created a textile schema, named TexGen. The prerequisites of this software were to be able to model various types of textile structures. A CFD model using CFX 11.0 was developed to be able to predict fabric permeability. In addition, an analytical model was developed for fabrics deformed by shear, compaction and tension. Experimental work for through thickness air permeability of sheared fabric was used to verify predicted results. An analytical model for thermal conductivity of fabrics was developed including the influence of moisture content on thermal conductivity. Two existing approaches for single-layer fabrics are described and compared: rule of mixtures and thermal resistance approach. A me6iod for thermal conductivity prediction for multiple layer fabrics is presented. The results are compared to the experimental data and analysed. Some predicted results were in excellent and good agreement with experimental data whereas other predicted results were in poor agreement with experimental data as they were dramatically affected by the assumptions made in the analytical model

    Numerical Simulation of Droplets with Dynamic Contact Angles

    Get PDF
    The numerical simulation of droplet impact is of interest for a vast variety of industrialprocesses, where practical experiments are costly and time-consuming. In these simulations, the dynamic contact angle is a key parameter, but the modeling of its behavior is poorly understood so far. One of the few models, which considers the overall physical context of the involved 'moving contact line problem' is Shikhmurzaev’s interface formation model. In addition to keeping the problem well-posed, all surface and bulk parameters, such as the contact angle, are determined as part of the solution rather than being prescribed functions of contact line speed. In this thesis, we couple an asymptotic version of the interface formation model with our three-dimensional incompressible two-phase Navier-Stokes solver NaSt3DGPF developed at the Institute for Numerical Simulation, Bonn University. With this sophisticated model, the droplet shapes, heights and diameters compare very well with those from a range of practical experiments
    corecore