5,981 research outputs found

    Extending Nunchaku to Dependent Type Theory

    Get PDF
    Nunchaku is a new higher-order counterexample generator based on a sequence of transformations from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle, it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper, we present some ideas to extend Nunchaku with partial support for dependent types and type classes, to make frontends for Coq and other systems based on dependent type theory more useful.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    Foundational Extensible Corecursion

    Full text link
    This paper presents a formalized framework for defining corecursive functions safely in a total setting, based on corecursion up-to and relational parametricity. The end product is a general corecursor that allows corecursive (and even recursive) calls under well-behaved operations, including constructors. Corecursive functions that are well behaved can be registered as such, thereby increasing the corecursor's expressiveness. The metatheory is formalized in the Isabelle proof assistant and forms the core of a prototype tool. The corecursor is derived from first principles, without requiring new axioms or extensions of the logic

    Confluence by Decreasing Diagrams -- Formalized

    Full text link
    This paper presents a formalization of decreasing diagrams in the theorem prover Isabelle. It discusses mechanical proofs showing that any locally decreasing abstract rewrite system is confluent. The valley and the conversion version of decreasing diagrams are considered.Comment: 17 pages; valley and conversion version; RTA 201

    Computer Science and Metaphysics: A Cross-Fertilization

    Full text link
    Computational philosophy is the use of mechanized computational techniques to unearth philosophical insights that are either difficult or impossible to find using traditional philosophical methods. Computational metaphysics is computational philosophy with a focus on metaphysics. In this paper, we (a) develop results in modal metaphysics whose discovery was computer assisted, and (b) conclude that these results work not only to the obvious benefit of philosophy but also, less obviously, to the benefit of computer science, since the new computational techniques that led to these results may be more broadly applicable within computer science. The paper includes a description of our background methodology and how it evolved, and a discussion of our new results.Comment: 39 pages, 3 figure

    Non-primitive Recursive Function Definitions

    Get PDF
    This paper presents an approach to the problem of introducingnon-primitive recursive function definitions in higher order logic. Arecursive specification is translated into a domain theory version, wherethe recursive calls are treated as potentially non-terminating. Once wehave proved termination, the original specification can be derived easily.A collection of algorithms are presented which hide the domain theoryfrom a user. Hence, the derivation of a domain theory specificationhas been automated completely, and for well-founded recursive functionspecifications the process of deriving the original specification from thedomain theory one has been automated as well, though a user mustsupply a well-founded relation and prove certain termination propertiesof the specification. There are constructions for building well-foundedrelations easily

    A Refinement Calculus for Logic Programs

    Get PDF
    Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.Comment: 36 pages, 3 figures. To be published in Theory and Practice of Logic Programming (TPLP

    Inductive and Coinductive Components of Corecursive Functions in Coq

    Get PDF
    In Constructive Type Theory, recursive and corecursive definitions are subject to syntactic restrictions which guarantee termination for recursive functions and productivity for corecursive functions. However, many terminating and productive functions do not pass the syntactic tests. Bove proposed in her thesis an elegant reformulation of the method of accessibility predicates that widens the range of terminative recursive functions formalisable in Constructive Type Theory. In this paper, we pursue the same goal for productive corecursive functions. Notably, our method of formalisation of coinductive definitions of productive functions in Coq requires not only the use of ad-hoc predicates, but also a systematic algorithm that separates the inductive and coinductive parts of functions.Comment: Dans Coalgebraic Methods in Computer Science (2008

    Total Haskell is Reasonable Coq

    Full text link
    We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, "Hutton's razor", and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification.Comment: 13 pages plus references. Published at CPP'18, In Proceedings of 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP'18). ACM, New York, NY, USA, 201

    Implementing and reasoning about hash-consed data structures in Coq

    Get PDF
    We report on four different approaches to implementing hash-consing in Coq programs. The use cases include execution inside Coq, or execution of the extracted OCaml code. We explore the different trade-offs between faithful use of pristine extracted code, and code that is fine-tuned to make use of OCaml programming constructs not available in Coq. We discuss the possible consequences in terms of performances and guarantees. We use the running example of binary decision diagrams and then demonstrate the generality of our solutions by applying them to other examples of hash-consed data structures
    corecore