7,353 research outputs found

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Algorithm to layout (ATL) systems for VLSI design

    Get PDF
    PhD ThesisThe complexities involved in custom VLSI design together with the failure of CAD techniques to keep pace with advances in the fabrication technology have resulted in a design bottleneck. Powerful tools are required to exploit the processing potential offered by the densities now available. Describing a system in a high level algorithmic notation makes writing, understanding, modification, and verification of a design description easier. It also removes some of the emphasis on the physical issues of VLSI design, and focus attention on formulating a correct and well structured design. This thesis examines how current trends in CAD techniques might influence the evolution of advanced Algorithm To Layout (ATL) systems. The envisaged features of an example system are specified. Particular attention is given to the implementation of one its features COPTS (Compilation Of Occam Programs To Schematics). COPTS is capable of generating schematic diagrams from which an actual layout can be derived. It takes a description written in a subset of Occam and generates a high level schematic diagram depicting its realisation as a VLSI system. This diagram provides the designer with feedback on the relative placement and interconnection of the operators used in the source code. It also gives a visual representation of the parallelism defined in the Occam description. Such diagrams are a valuable aid in documenting the implementation of a design. Occam has also been selected as the input to the design system that COPTS is a feature of. The choice of Occam was made on the assumption that the most appropriate algorithmic notation for such a design system will be a suitable high level programming language. This is in contrast to current automated VLSI design systems, which typically use a hardware des~ription language for input. These special purpose languages currently concentrate on handling structural/behavioural information and have limited ability to express algorithms. Using a language such as Occam allows a designer to write a behavioural description which can be compiled and executed as a simulator, or prototype, of the system. The programmability introduced into the design process enables designers to concentrate on a design's underlying algorithm. The choice of this algorithm is the most crucial decision since it determines the performance and area of the silicon implementation. The thesis is divided into four sections, each of several chapters. The first section considers VLSI design complexity, compares the expert systems and silicon compilation approaches to tackling it, and examines its parallels with software complexity. The second section reviews the advantages of using a conventional programming language for VLSI system descriptions. A number of alternative high level programming languages are considered for application in VLSI design. The third section defines the overall ATL system COPTS is envisaged to be part of, and considers the schematic representation of Occam programs. The final section presents a summary of the overall project and suggestions for future work on realising the full ATL system

    STRICT: a language and tool set for the design of very large scale integrated circuits

    Get PDF
    PhD ThesisAn essential requirement for the design of large VLSI circuits is a design methodology which would allow the designer to overcome the complexity and correctness issues associated with the building of such circuits. We propose that many of the problems of the design of large circuits can be solved by using a formal design notation based upon the functional programming paradigm, that embodies design concepts that have been used extensively as the framework for software construction. The design notation should permit parallel, sequential, and recursive decompositions of a design into smaller components, and it should allow large circuits to be constructed from simpler circuits that can be embedded in a design in a modular fashion. Consistency checking should be provided as early as possible in a design. Such a methodology would structure the design of a circuit in much the same way that procedures, classes, and control structures may be used to structure large software systems. However, such a design notation must be supported by tools which automatically check the consistency of the design, if the methodology is to be practical. In principle, the methodology should impose constraints upon circuit design to reduce errors and provide' correctness by construction' . It should be possible to generate efficient and correct circuits, by providing a route to a large variety of design tools commonly found in design systems: simulators, automatic placement and routing tools, module generators, schematic capture tools, and formal verification and synthesis tools

    STAIRS - Understanding and Developing Specifications Expressed as UML Interaction Diagrams

    Get PDF
    STAIRS is a method for the step-wise, compositional development of interactions in the setting of UML 2.x. UML 2.x interactions, such as sequence diagrams and interaction overview diagrams, are seen as intuitive ways of describing communication between different parts of a system, and between a system and its users. STAIRS addresses the challenges of harmonizing intuition and formal reasoning by providing a precise understanding of the partial nature of interactions, and of how this kind of incomplete specifications may be consistently refined into more complete specifications. For understanding individual interaction diagrams, STAIRS defines a denotational trace semantics for the main constructs of UML 2.x interactions. The semantic model takes into account the partiality of interactions, and the formal semantics of STAIRS is faithful to the informal semantics given in the UML 2.x standard. For developing UML 2.x interactions, STAIRS defines a number of refinement relations corresponding to basic system development steps. STAIRS also defines matching compliance relations, for relating interactions to real computer systems. An important feature of STAIRS is the distinction between underspecification and inherent nondeterminism. Underspecification means that there are several possible behaviours serving the same overall purpose, and that it is sufficient for a computer system to perform only one of these. On the other hand, inherent nondeterminism is used to capture alternative behaviours that must all be possible for an implementation. A typical example is the tossing of a coin, where both heads and tails should be possible outcomes. In some cases, using inherent nondeterminism may also be essential for ensuring the necessary security properties of a system

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    High-level synthesis of VLSI circuits

    Get PDF

    An Integrated Methodology for Creating Composed Web/Grid Services

    Get PDF
    This thesis presents an approach to design, specify, validate, verify, implement, and evaluate composed web/grid services. Web and grid services can be composed to create new services with complex behaviours. The BPEL (Business Process Execution Language) standard was created to enable the orchestration of web services, but there have also been investigation of its use for grid services. BPEL specifies the implementation of service composition but has no formal semantics; implementations are in practice checked by testing. Formal methods are used in general to define an abstract model of system behaviour that allows simulation and reasoning about properties. The approach can detect and reduce potentially costly errors at design time. CRESS (Communication Representation Employing Systematic Specification) is a domainindependent, graphical, abstract notation, and integrated toolset for developing composite web service. The original version of CRESS had automated support for formal specification in LOTOS (Language Of Temporal Ordering Specification), executing formal validation with MUSTARD (Multiple-Use Scenario Testing and Refusal Description), and implementing in BPEL4WS as the early version of BPEL standard. This thesis work has extended CRESS and its integrated tools to design, specify, validate, verify, implement, and evaluate composed web/grid services. The work has extended the CRESS notation to support a wider range of service compositions, and has applied it to grid services as a new domain. The thesis presents two new tools, CLOVE (CRESS Language-Oriented Verification Environment) and MINT (MUSTARD Interpreter), to respectively support formal verification and implementation testing. New work has also extended CRESS to automate implementation of composed services using the more recent BPEL standard WS-BPEL 2.0

    Modal logic for handling behavioural constraints in formal hardware verification

    Get PDF
    • …
    corecore