3,624 research outputs found

    Introducing linked open data in graph-based recommender systems

    Get PDF
    Thanks to the recent spread of the Linked Open Data (LOD) initiative, a huge amount of machine-readable knowledge encoded as RDF statements is today available in the so-called LOD cloud. Accordingly, a big effort is now spent to investigate to what extent such information can be exploited to develop new knowledge-based services or to improve the effectiveness of knowledge-intensive platforms as Recommender Systems (RS). To this end, in this article we study the impact of the exogenous knowledge coming from the LOD cloud on the overall performance of a graph-based recommendation framework. Specifically, we propose a methodology to automatically feed a graph-based RS with features gathered from the LOD cloud and we analyze the impact of several widespread feature selection techniques in such recommendation settings. The experimental evaluation, performed on three state-of-the-art datasets, provided several outcomes: first, information extracted from the LOD cloud can significantly improve the performance of a graph-based RS. Next, experiments showed a clear correlation between the choice of the feature selection technique and the ability of the algorithm to maximize specific evaluation metrics, as accuracy or diversity of the recommendations. Moreover, our graph-based algorithm fed with LOD-based features was able to overcome several baselines, as collaborative filtering and matrix factorization

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    Semantic user profiling techniques for personalised multimedia recommendation

    Get PDF
    Due to the explosion of news materials available through broadcast and other channels, there is an increasing need for personalised news video retrieval. In this work, we introduce a semantic-based user modelling technique to capture users’ evolving information needs. Our approach exploits implicit user interaction to capture long-term user interests in a profile. The organised interests are used to retrieve and recommend news stories to the users. In this paper, we exploit the Linked Open Data Cloud to identify similar news stories that match the users’ interest. We evaluate various recommendation parameters by introducing a simulation-based evaluation scheme

    Explainable Reasoning over Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.Comment: 8 pages, 5 figures, AAAI-201
    corecore