2,148 research outputs found

    Introducing concurrency in sequential Java via laws

    Get PDF
    AbstractNowadays multi-core processors can be found everywhere. It is well known that one way of improving performance is by parallelization. In this paper we propose a parallelization strategy for Java using algebraic laws. We perform an experiment with two benchmarks and show that our strategy produces a gain similar to a specialized parallel version provided by the Java Grande Benchmark (JGB)

    gCSP: A Graphical Tool for Designing CSP systems

    Get PDF
    For broad acceptance of an engineering paradigm, a graphical notation and a supporting design tool seem necessary. This paper discusses certain issues of developing a design environment for building systems based on CSP. Some of the issues discussed depend specifically on the underlying theory of CSP, while a number of them are common for any graphical notation and supporting tools, such as provisions for complexity management and design overview

    TAPAs: A Tool for the Analysis of Process Algebras

    Get PDF
    Process algebras are formalisms for modelling concurrent systems that permit mathematical reasoning with respect to a set of desired properties. TAPAs is a tool that can be used to support the use of process algebras to specify and analyze concurrent systems. It does not aim at guaranteeing high performances, but has been developed as a support to teaching. Systems are described as process algebras terms that are then mapped to labelled transition systems (LTSs). Properties are verified either by checking equivalence of concrete and abstract systems descriptions, or by model checking temporal formulae over the obtained LTS. A key feature of TAPAs, that makes it particularly suitable for teaching, is that it maintains a consistent double representation of each system both as a term and as a graph. Another useful didactical feature is the exhibition of counterexamples in case equivalences are not verified or the proposed formulae are not satisfied

    A semi-automatic parallelization tool for Java based on fork-join synchronization patterns

    Get PDF
    Because of the increasing availability of multi-core machines, clusters, Grids, and combinations of these environments, there is now plenty of computational power available for executing compute intensive applications. However, because of the overwhelming and rapid advances in distributed and parallel hardware and environments, today?s programmers are not fully prepared to exploit distribution and parallelism. In this sense, the Java language has helped in handling the heterogeneity of such environments, but there is a lack of facilities and tools to easily distributing and parallelizing applications. One solution to mitigate this problem and make some progress towards producing general tools seems to be the synthesis of semi-automatic parallelism and Parallelism as a Concern (PaaC), which allows parallelizing applications along with as little modifications on sequential codes as possible. In this paper, we discuss a new approach that aims at overcoming the drawbacks of current Java-based parallel and distributed development tools, which precisely exploit these new conceptsFil: Hirsch, Matias. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Zunino, Alejandro. Consejo Nacional de Invest.cientif.y Tecnicas. Ctro Cientifico Tecnologico Conicet - Tandil. Instituto Superior de Ingenieria del Software;Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - CONICET - Tandil. Instituto Superior de Ingenieria del Software

    Refining SCJ Mission Specifications into Parallel Handler Designs

    Full text link
    Safety-Critical Java (SCJ) is a recent technology that restricts the execution and memory model of Java in such a way that applications can be statically analysed and certified for their real-time properties and safe use of memory. Our interest is in the development of comprehensive and sound techniques for the formal specification, refinement, design, and implementation of SCJ programs, using a correct-by-construction approach. As part of this work, we present here an account of laws and patterns that are of general use for the refinement of SCJ mission specifications into designs of parallel handlers used in the SCJ programming paradigm. Our notation is a combination of languages from the Circus family, supporting state-rich reactive models with the addition of class objects and real-time properties. Our work is a first step to elicit laws of programming for SCJ and fits into a refinement strategy that we have developed previously to derive SCJ programs.Comment: In Proceedings Refine 2013, arXiv:1305.563

    EasyFJP: Providing Hybrid Parallelism as a Concern for Divide and Conquer Java Applications

    Get PDF
    Because of the increasing availability of multi-core machines, clus- ters, Grids, and combinations of these there is now plenty of computational power,but today's programmers are not fully prepared to exploit parallelism. In particular, Java has helped in handling the heterogeneity of such environments. However, there is a lot of ground to cover regarding facilities to easily and elegantly parallelizing applications. One path to this end seems to be the synthesis of semi- automatic parallelism and Parallelism as a Concern (PaaC). The former allows users to be mostly unaware of parallel exploitation problems and at the same time manually optimize parallelized applications whenever necessary, while the latter allows applications to be separated from parallel-related code. In this paper, we present EasyFJP, an approach that implicitly exploits parallelism in Java applications based on the concept of fork-join synchronization pattern, a simple but effective abstraction for creating and coordinating parallel tasks. In addition, EasyFJP lets users to explicitly optimize applications through policies, or user-provided rules to dynamically regulate task granularity. Finally, EasyFJP relies on PaaC by means of source code generation techniques to wire applications and parallel-specific code together. Experiments with real-world applications on an emulated Grid and a cluster evidence that EasyFJP delivers competitive performance compared to state-of-the-art Java parallel programming tools.Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina

    On Asynchronous Session Semantics

    Get PDF
    This paper studies a behavioural theory of the π-calculus with session types under the fundamental principles of the practice of distributed computing — asynchronous communication which is order-preserving inside each connection (session), augmented with asynchronous inspection of events (message arrivals). A new theory of bisimulations is introduced, distinct from either standard asynchronous or synchronous bisimilarity, accurately capturing the semantic nature of session-based asynchronously communicating processes augmented with event primitives. The bisimilarity coincides with the reduction-closed barbed congruence. We examine its properties and compare them with existing semantics. Using the behavioural theory, we verify that the program transformation of multithreaded into event-driven session based processes, using Lauer-Needham duality, is type and semantic preserving

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    Hoare-style Specifications as Correctness Conditions for Non-linearizable Concurrent Objects

    Get PDF
    Designing scalable concurrent objects, which can be efficiently used on multicore processors, often requires one to abandon standard specification techniques, such as linearizability, in favor of more relaxed consistency requirements. However, the variety of alternative correctness conditions makes it difficult to choose which one to employ in a particular case, and to compose them when using objects whose behaviors are specified via different criteria. The lack of syntactic verification methods for most of these criteria poses challenges in their systematic adoption and application. In this paper, we argue for using Hoare-style program logics as an alternative and uniform approach for specification and compositional formal verification of safety properties for concurrent objects and their client programs. Through a series of case studies, we demonstrate how an existing program logic for concurrency can be employed off-the-shelf to capture important state and history invariants, allowing one to explicitly quantify over interference of environment threads and provide intuitive and expressive Hoare-style specifications for several non-linearizable concurrent objects that were previously specified only via dedicated correctness criteria. We illustrate the adequacy of our specifications by verifying a number of concurrent client scenarios, that make use of the previously specified concurrent objects, capturing the essence of such correctness conditions as concurrency-aware linearizability, quiescent, and quantitative quiescent consistency. All examples described in this paper are verified mechanically in Coq.Comment: 18 page
    • 

    corecore