33,165 research outputs found

    Education innovation through material innovation in primary education : the grow-it-yourself workshop

    Get PDF
    In recent years more STEM (Science, Technology, Engineering and Mathematics) topics have been incorporated in mainstream public education. Although the benefits of STEM instruction are broadly recognised in secondary school curricula, STEM topics in primary education are rather limited, leaving a gap in manipulative skills building and in preparation processes for the next school level. This paper reflects on the outcomes of a design workshop attended by 12 primary school students (9 to 12 years old) in Belgium. Mycelium, a fungi-based natural material now used in innovative sustainable applications, served as a means to introduce early learners engineering basics through self-made learning tools. Students grew their own 3-D structures to build a 'Grow-It-Yourself biodegradable playground using mycelium as a primary source. The paper stems from an in-progress research that investigates the opportunities of how mycelium as a material innovation can be used as a medium to create innovation in primary education through a learning-by-design approach. Reflections on the workshop's instructional guidelines are included along with an extension of the call for support for primary school teachers delivering STEM topics in their classes

    Proceedings of the Third Computing Women Congress (CWC 2008): Student papers

    Get PDF
    The Third Computing Women Congress was held at the University of Waikato, Hamilton, New Zealand from February 11th to 13th, 2008. The Computing Women Congress (CWC) is a Summer University for women in Computer Science. It is a meeting-place for female students, academics and professionals who study or work in Information Technology. CWC provides a forum to learn about and share the latest ideas of computing related topics in a supportive environment. CWC provides an open, explorative learning and teaching environment. Experimentation with new styles of learning is encouraged, with an emphasis on hands-on experience and engaging participatory techniques

    D-STEM: a Design led approach to STEM innovation

    Get PDF
    Advances in the Science, Technology, Engineering and Maths (STEM) disciplines offer opportunities for designers to propose and make products with advanced, enhanced and engineered properties and functionalities. In turn, these advanced characteristics are becoming increasingly necessary as resources become ever more strained through 21st century demands, such as ageing populations, connected communities, depleting raw materials, waste management and energy supply. We need to make things that are smarter, make our lives easier, better and simpler. The products of tomorrow need to do more with less. The issue is how to maximize the potential for exploiting opportunities offered by STEM developments and how best to enable designers to strengthen their position within the innovation ecosystem. As a society, we need designers able to navigate emerging developments from the STEM community to a level that enables understanding and knowledge of the new material properties, the skill set to facilitate absorption into the design ā€˜toolboxā€™ and the agility to identify, manage and contextualise innovation opportunities emerging from STEM developments. This paper proposes the blueprint for a new design led approach to STEM innovation that begins to redefine studio culture for the 21st Century

    D-STEM: a Design led approach to STEM innovation

    Get PDF
    Advances in the Science, Technology, Engineering and Maths (STEM) disciplines offer opportunities for designers to propose and make products with advanced, enhanced and engineered properties and functionalities. In turn, these advanced characteristics are becoming increasingly necessary as resources become ever more strained through 21st century demands, such as ageing populations, connected communities, depleting raw materials, waste management and energy supply. We need to make things that are smarter, make our lives easier, better and simpler. The products of tomorrow need to do more with less. The issue is how to maximize the potential for exploiting opportunities offered by STEM developments and how best to enable designers to strengthen their position within the innovation ecosystem. As a society, we need designers able to navigate emerging developments from the STEM community to a level that enables understanding and knowledge of the new material properties, the skill set to facilitate absorption into the design ā€˜toolboxā€™ and the agility to identify, manage and contextualise innovation opportunities emerging from STEM developments. This paper proposes the blueprint for a new design led approach to STEM innovation that begins to redefine studio culture for the 21st Century
    • ā€¦
    corecore