507 research outputs found

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included

    Tardiness Bounds and Overload in Soft Real-Time Systems

    Get PDF
    In some systems, such as future generations of unmanned aerial vehicles (UAVs), different software running on the same machine will require different timing guarantees. For example, flight control software has hard real-time (HRT) requirements---if a job (i.e., invocation of a program) completes late, then safety may be compromised, so jobs must be guaranteed to complete within short deadlines. However, mission control software is likely to have soft real-time (SRT) requirements---if a job completes slightly late, the result is not likely to be catastrophic, but lateness should never be unbounded. The global earliest-deadline-first (G-EDF) scheduler has been demonstrated to be useful for the multiprocessor scheduling of software with SRT requirements, and the multicore mixed-criticality (MC2) framework using G-EDF for SRT scheduling has been proposed to safely mix HRT and SRT work on multicore UAV platforms. This dissertation addresses limitations of this prior work. G-EDF is attractive for SRT systems because it allows the system to be fully utilized with reasonable overheads. Furthermore, previous analysis of G-EDF can provide "lateness bounds" on the amount of time between a job's deadline and its completion. However, smaller lateness bounds are preferable, and some programs may be more sensitive to lateness than others. In this dissertation, we explore the broader category of G-EDF-like (GEL) schedulers that have identical overhead characteristics to G-EDF. We show that by choosing GEL schedulers other than G-EDF, better lateness can be achieved, and that certain modifications can further improve lateness bounds while maintaining reasonable overheads. Specifically, successive jobs from the same program can be permitted to run in parallel with each other, or jobs can be split into smaller pieces by the operating system. Previous analysis of MC2 has always used less pessimistic execution time assumptions when analyzing SRT work than when analyzing HRT work. These assumptions can be violated, creating an overload that causes SRT guarantees to be violated. Furthermore, even in the expected case that such violations are transient, the system is not guaranteed to return to its normal operation. In this dissertation, we also provide a mechanism that can be used to provide such recovery.Doctor of Philosoph

    A reconfigurable mixed-time-criticality SDRAM controller

    Get PDF

    Tradespace and Affordability – Phase 1

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering – “SE Transformation.” The Grand Challenge goal for SE Transformation is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, outside-in, document-driven, point-solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, balanced outside-in and inside-out, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

    Get PDF
    A cyber-physical system (CPS) employs tight integration of, and coordination between computational, networking, and physical elements. Wireless sensor-actuator networks provide a new communication technology for a broad range of CPS applications such as process control, smart manufacturing, and data center management. Sensing and control in these systems need to meet stringent real-time performance requirements on communication latency in challenging environments. There have been limited results on real-time scheduling theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis for wireless sensor-actuator networks requires new methodologies to deal with unique characteristics of wireless communication. Furthermore, the performance of a wireless control involves intricate interactions between real-time communication and control. This thesis research tackles these challenges and make a series of contributions to the theory and system for wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator networks. (2) We develop a scheduling-control co-design approach for holistic optimization of control performance in a wireless control system. (3) We design and implement a wireless sensor-actuator network for CPS in data center power management. (4) We expand our research to develop scheduling algorithms and analyses for real-time parallel computing to support computation-intensive CPS
    • …
    corecore