33,446 research outputs found

    Microscopic models of financial markets

    Get PDF
    This review deals with several microscopic models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power-law with index around three), it became clear that financial markets dynamics give rise to some kind of universal scaling laws. Showing similarities with scaling laws for other systems with many interacting subunits, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic was pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavors of multi-agent models that have appeared by now, we discuss the Cont-Bouchaud, Solomon-Levy-Huang and Lux-Marchesi models. Open research questions are discussed in our concluding section. --

    Enhanced news sentiment analysis using deep learning methods

    Get PDF
    We explore the predictive power of historical news sentiments based on financial market performance to forecast financial news sentiments. We define news sentiments based on stock price returns averaged over one minute right after a news article has been released. If the stock price exhibits positive (negative) return, we classify the news article released just prior to the observed stock return as positive (negative). We use Wikipedia and Gigaword five corpus articles from 2014 and we apply the global vectors for word representation method to this corpus to create word vectors to use as inputs into the deep learning TensorFlow network. We analyze high-frequency (intraday) Thompson Reuters News Archive as well as the high-frequency price tick history of the Dow Jones Industrial Average (DJIA 30) Index individual stocks for the period between 1/1/2003 and 12/30/2013. We apply a combination of deep learning methodologies of recurrent neural network with long short-term memory units to train the Thompson Reuters News Archive Data from 2003 to 2012, and we test the forecasting power of our method on 2013 News Archive data. We find that the forecasting accuracy of our methodology improves when we switch from random selection of positive and negative news to selecting the news with highest positive scores as positive news and news with highest negative scores as negative news to create our training data set.Published versio
    corecore