24,880 research outputs found

    Encoding Classifications as Lightweight Ontologies

    Get PDF
    Classifications have been used for centuries with the goal of cataloguing and searching large sets of objects. In the early days it was mainly books; lately it has also become Web pages, pictures and any kind of electronic information items. Classifications describe their contents using natural language labels, which has proved very effective in manual classification. However natural language labels show their limitations when one tries to automate the process, as they make it very hard to reason about classifications and their contents. In this paper we introduce the novel notion of Formal Classification, as a graph structure where labels are written in a propositional concept language. Formal Classifications turn out to be some form of lightweight ontologies. This, in turn, allows us to reason about them, to associate to each node a normal form formula which univocally describes its contents, and to reduce document classification to reasoning about subsumption

    Learning Character-level Compositionality with Visual Features

    Full text link
    Previous work has modeled the compositionality of words by creating character-level models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the meaning of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.Comment: Accepted to ACL 201
    • …
    corecore