4,511 research outputs found

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Information-Centric Design and Implementation for Underwater Acoustic Networks

    Get PDF
    Over the past decade, Underwater Acoustic Networks (UANs) have received extensive attention due to their vast benefits in academia and industry alike. However, due to the overall magnitude and harsh characteristics of underwater environments, standard wireless network techniques will fail because current technology and energy restrictions limit underwater devices due to delayed acoustic communications. To help manage these limitations we utilize Information-Centric Networking (ICN). More importantly, we look at ICN\u27s paradigm shift from traditional TCP/IP architecture to improve data handling and enhance network efficiency. By utilizing some of ICN\u27s techniques, such as data naming hierarchy, we can reevaluate each component of the network\u27s protocol stack given current underwater limitations to study the vast solutions and perspectives Information-Centric architectures can provide to UANs. First, we propose a routing strategy used to manage and route large data files in a network prone to high mobility. Therefore, due to UANs limited transmitting capability, we passively store sensed data and adaptively find the best path. Furthermore, we introduce adapted Named Data Networking (NDN) components to improve upon routing robustness and adaptiveness. Beyond naming data, we use tracers to assist in tracking stored data locations without using other excess means such as flooding. By collaborating tracer consistency with routing path awareness our protocol can adaptively manage faulty or high mobility nodes. Through this incorporation of varied NDN techniques, we are able to see notable improvements in routing efficiency. Second, we analyze the effects of Denial of Service (DoS) attacks on upper layer protocols. Since UANs are typically resource restrained, malicious users can advantageously create fake traffic to burden the already constrained network. While ICN techniques only provide basic DoS restriction we must expand our detection and restriction technique to meet the unique demands of UANs. To provide enhanced security against DoS we construct an algorithm to detect and restrict against these types of attacks while adapting to meet acoustic characteristics. To better extend this work we incorporate three node behavior techniques using probabilistic, adaptive, and predictive approaches for detecting malicious traits. Thirdly, to depict and test protocols in UANs, simulators are commonly used due to their accessibility and controlled testing aspects. For this section, we review Aqua-Sim, a discrete event-driven open-source underwater simulator. To enhance the core aspect of this simulator we first rewrite the current architecture and transition Aqua-Sim to the newest core simulator, NS-3. Following this, we clean up redundant features spread out between the various underwater layers. Additionally, we fully integrate the diverse NS-3 API within our simulator. By revamping previous code layout we are able to improve architecture modularity and child class expandability. New features are also introduced including localization and synchronization support, busy terminal problem support, multi-channel support, transmission range uncertainty modules, external noise generators, channel trace-driven support, security module, and an adapted NDN module. Additionally, we provide extended documentation to assist in user development. Simulation testing shows improved memory management and continuous validity in comparison to other underwater simulators and past iterations of Aqua-Sim

    Queuing Modelling and Performance Analysis of Content Transfer in Information Centric Networks

    Get PDF
    With the rapid development of multimedia services and wireless technology, new generation of network traffic like short-form video and live streaming have put tremendous pressure on the current network infrastructure. To meet the high bandwidth and low latency needs of this new generation of traffic, the focus of Internet architecture has moved from host-centric end-to-end communication to requester-driven content retrieval. This shift has motivated the development of Information-Centric Networking (ICN), a promising new paradigm for the future Internet. ICN aims to improve information retrieval on the Internet by identifying and routing data using unified names. In-network caching and the use of a pending interest table (PIT) are two key features of ICN that are designed to efficiently handle bulk data dissemination and retrieval, as well as reduce bandwidth consumption. Performance analysis has been and continues to be key research interests of ICN. This thesis starts with the evaluation of content delivery delays in ICN. The main component of delay is composed of propagation delay, transmission delay,processing delay and queueing delay. To characterize the main components of content delivery delay, queueing network theory has been exploited to coordinate with cache miss rate in modelling the content delivery time in ICN. Moreover, different topologies and network conditions have been taken into account to evaluate the performance of content transfer in ICN. ICN is intrinsically compatible with wireless networks. To evaluate the performance of content transfer in wireless networks, an analytical model to evaluate the mean service time based on consumer and provider mobility has been proposed. The accuracy of the analytical model is validated through extensive simulation experiments. Finally, the analytical model is used to evaluate the impact of key metrics, such as the cache size, content size and content popularity on the performance of PIT and content transfer in ICN. Pending interest table (PIT) is one of the essential components of the ICN forwarding plane, which is responsible for stateful routing in ICN. It also aggregates the same interests to alleviate request flooding and network congestion. The aggregation feature of PIT improves performance of content delivery in ICN. Thus, having an analytical model to characterize the impact of PIT on content delivery time could allow for a more precise evaluation of content transfer performance. In parallel, if the size of the PIT is not properly determined, the interest drop rate may be too high, resulting in a reduction in quality of service for consumers as their requests have to be retransmitted. Furthermore, PIT is a costly resource as it requires to operate at wirespeed in the forwarding plane. Therefore, in order to ensure that interests drop rate less than the requirement, an analytical model of PIT occupancy has been developed to determine the minimum PIT size. In this thesis, the proposed analytical models are used to efficiently and accurately evaluate the performance of ICN content transfer and investigate the key component of ICN forwarding plane. Leveraging the insights discovered by these analytical models, the minimal PIT size and proper interest timeout can be determined to enhance the performance of ICN. To widen the outcomes achieved in the thesis, several interesting yet challenging research directions are pointed out

    Routing and Applications of Vehicular Named Data Networking

    Get PDF
    Vehicular Ad hoc NETwork (VANET) allows vehicles to exchange important informationamong themselves and has become a critical component for enabling smart transportation.In VANET, vehicles are more interested in content itself than from which vehicle the contentis originated. Named Data Networking (NDN) is an Internet architecture that concentrateson what the content is rather than where the content is located. We adopt NDN as theunderlying communication paradigm for VANET because it can better address a plethora ofproblems in VANET, such as frequent disconnections and fast mobility of vehicles. However,vehicular named data networking faces the problem of how to efficiently route interestpackets and data packets. To address the problem, we propose a new geographic routing strategy of applying NDNin vehicular networks with Delay Tolerant Networking (DTN) support, called GeoDTN-NDN. We designed a hybrid routing mechanism for solving the flooding issue of forwardinginterest packets and the disruption problem of delivering data packets. To avoid disruptionscaused by routing packets over less-traveled roads, we develop a new progressive segmentrouting approach that takes into consideration how vehicles are distributed among differentroads, with the goal of favoring well-traveled roads. A novel criterion for determiningprogress of routing is designed to guarantee that the destination will be reached no matterwhether a temporary loop may be formed in the path. We also investigate applications of vehicular named data networking. We categorizethese applications into four types and design an NDN naming scheme for them. We proposea fog-computing based architecture to support the smart parking application, which enablesa driver to find a parking lot with available parking space and make reservation for futureparking need. Finally we describe several future research directions for vehicular nameddata networking

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces

    Cooperative data transfers for 5G networks

    Get PDF
    The demand for higher capacity, higher data rate and larger bandwidth has driven the research and industrial world to develop next generation wireless communication technology, namely, the 5G. Among all the approaches proposed for such a high demand, only the cooperative communication approach promises to significantly improve of the performances (capacity, data rate, bandwidth, etc.) with a low cost. In this thesis, we propose a D2D communication scheme as a solution for the out-door scenario and a cooperative scheme among the access infrastructures as the in-door scenario solution. In the first part, we address the implementation of content-centric routing in a D2D architecture for Android devices based on WiFi Direct, a protocol recently standardised by the Wi-Fi Alliance. After discussing the creation of multiple D2D groups, we introduce novel paradigms featuring intra- and inter-group bidirectional communication. We then present the primitives involved in content advertising and requesting among members of the multi-group network. In addition to the communications, we also devise a mechanism to enable the devices to spontaneously establish the multi-group D2D network. Finally, we evaluate the performance of our architecture and the network formation mechanism in a real testbed consisting of Android devices. In the second part, we propose, implement and evaluate a bandwidth aggregation service for residential users that allows to improve the upload throughput of the ADSL connection by leveraging the unused bandwidth of neighboring users. The residential access gateway adopts the 802.11 radio interface to simultaneously serve the local home users and to share the broadband connectivity with neighboring access gateways. Differently from previous works, our aggregation scheme is transparent both for local users, who are not required to modify their applications or device drivers, and for neighboring users, who do not experience any meaningful performance degradation. In order to evaluate the achievable performance and tune the parameters driving the traffic balancing, we developed a fluid model which was shown experimentally to be very accurate. Our proposed scheme is amenable to efficient implementation on Linux networking stack. Indeed, we implemented it and tested in some realistic scenarios, showing an efficient exploitation of the whole available bandwidth, also for legacy cloud storage applications

    Measuring named data networks

    Get PDF
    2020 Spring.Includes bibliographical references.Named Data Networking (NDN) is a promising information-centric networking (ICN) Internet architecture that addresses the content directly rather than addressing servers. NDN provides new features, such as content-centric security, stateful forwarding, and in-network caches, to better satisfy the needs of today's applications. After many years of technological research and experimentation, the community has started to explore the deployment path for NDN. One NDN deployment challenge is measurement. Unlike IP, which has a suite of measurement approaches and tools, NDN only has a few achievements. NDN routing and forwarding are based on name prefixes that do not refer to individual endpoints. While rich NDN functionalities facilitate data distribution, they also break the traditional end-to-end probing based measurement methods. In this dissertation, we present our work to investigate NDN measurements and fill some research gaps in the field. Our thesis of this dissertation states that we can capture a substantial amount of useful and actionable measurements of NDN networks from end hosts. We start by comparing IP and NDN to propose a conceptual framework for NDN measurements. We claim that NDN can be seen as a superset of IP. NDN supports similar functionalities provided by IP, but it has unique features to facilitate data retrieval. The framework helps identify that NDN lacks measurements in various aspects. This dissertation focuses on investigating the active measurements from end hosts. We present our studies in two directions to support the thesis statement. We first present the study to leverage the similarities to replicate IP approaches in NDN networks. We show the first work to measure the NDN-DPDK forwarder, a high-speed NDN forwarder designed and implemented by the National Institute of Standards and Technology (NIST), in a real testbed. The results demonstrate that Data payload sizes dominate the forwarding performance, and efficiently using every fragment to improve the goodput. We then present the first work to replicate packet dispersion techniques in NDN networks. Based on the findings in the NDN-DPDK forwarder benchmark, we devise the techniques to measure interarrivals for Data packets. The results show that the techniques successfully estimate the capacity on end hosts when 1Gbps network cards are used. Our measurements also indicate the NDN-DPDK forwarder introduces variance in Data packet interarrivals. We identify the potential bottlenecks and the possible causes of the variance. We then address the NDN specific measurements, measuring the caching state in NDN networks from end hosts. We propose a novel method to extract fingerprints for various caching decision mechanisms. Our simulation results demonstrate that the method can detect caching decisions in a few rounds. We also show that the method is not sensitive to cross-traffic and can be deployed on real topologies for caching policy detection
    • …
    corecore