239 research outputs found

    Cyber-physical systems in manufacturing: Future trends and research priorities

    Get PDF
    In the last decades, the manufacturing ecosystem witnessed an unprecedented evolution of disruptive technologies forging new opportunities for manufacturing companies to cope the ever-growing market pressure. Moreover, the race to create value for the customers has been hindered by several issues that both small and large companies have been facing, such as shorter product life cycles, rapid time-to-market, product complexity, cost pressure, increased international competition, etc. In this scenario, ICT represent a crucial enabler for preserving competitiveness and fostering industry innovation. In particular, among these technologies, Cyber-Physical Systems (CPS) is growing an ever-high interest of industry stakeholders, researchers, practitioners and policy makers as they are considered the key technology that will transform manufacturing industry to the next generation. Indeed, CPS is a breakthrough research area for ICT in manufacturing and represents the cornerstone for achieving the EU2020 "smart everywhere" vision. At this early development phase, there is the urgent need to set the ground for future research streams, create a common understanding and consensus, define viable migration paths and support standards definition. This paper describes the identified research challenges and the future trends that will drive to the adoption of CPS in manufacturing. The main evidences on researches challenges expected for CPS in manufacturing are outlined by the authors that have been involved in the sCorPiuS project 'European Roadmap for Cyber- Physical Systems in Manufacturing', promoted by the European Commission to define a roadmap for future CPS in manufacturing adoption research agenda

    6G White Paper on Edge Intelligence

    Get PDF
    In this white paper we provide a vision for 6G Edge Intelligence. Moving towards 5G and beyond the future 6G networks, intelligent solutions utilizing data-driven machine learning and artificial intelligence become crucial for several real-world applications including but not limited to, more efficient manufacturing, novel personal smart device environments and experiences, urban computing and autonomous traffic settings. We present edge computing along with other 6G enablers as a key component to establish the future 2030 intelligent Internet technologies as shown in this series of 6G White Papers. In this white paper, we focus in the domains of edge computing infrastructure and platforms, data and edge network management, software development for edge, and real-time and distributed training of ML/AI algorithms, along with security, privacy, pricing, and end-user aspects. We discuss the key enablers and challenges and identify the key research questions for the development of the Intelligent Edge services. As a main outcome of this white paper, we envision a transition from Internet of Things to Intelligent Internet of Intelligent Things and provide a roadmap for development of 6G Intelligent Edge

    Towards Flexible Integration of 5G and IIoT Technologies in Industry 4.0: A Practical Use Case

    Get PDF
    The Industry 4.0 revolution envisions fully interconnected scenarios in the manufacturing industry to improve the efficiency, quality, and performance of the manufacturing processes. In parallel, the consolidation of 5G technology is providing substantial advances in the world of communication and information technologies. Furthermore, 5G also presents itself as a key enabler to fulfill Industry 4.0 requirements. In this article, the authors first propose a 5G-enabled architecture for Industry 4.0. Smart Networks for Industry (SN4I) is introduced, an experimental facility based on two 5G key-enabling technologies—Network Functions Virtualization (NFV) and Software-Defined Networking (SDN)—which connects the University of the Basque Country’s Aeronautics Advanced Manufacturing Center and Faculty of Engineering in Bilbao. Then, the authors present the deployment of a Wireless Sensor Network (WSN) with strong access control mechanisms into such architecture, enabling secure and flexible Industrial Internet of Things (IIoT) applications. Additionally, the authors demonstrate the implementation of a use case consisting in the monitoring of a broaching process that makes use of machine tools located in the manufacturing center, and of services from the proposed architecture. The authors finally highlight the benefits achieved regarding flexibility, efficiency, and security within the presented scenario and to the manufacturing industry overall.This work was supported in part by the Spanish Ministry of Economy, Industry and Competitiveness through the State Secretariat for Research, Development and Innovation under the “Adaptive Management of 5G Services to Support Critical Events in Cities (5G-City)” TEC2016-76795-C6-5-R and “Towards zero touch network and services for beyond 5G (TRUE5G)” PID2019-108713RB-C54 projects and in part by the Department of Economic Development and Competitiveness of the Basque Government through the 5G4BRIS KK-2020/00031 research project

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Unleashing the Power of Edge-Cloud Generative AI in Mobile Networks: A Survey of AIGC Services

    Full text link
    Artificial Intelligence-Generated Content (AIGC) is an automated method for generating, manipulating, and modifying valuable and diverse data using AI algorithms creatively. This survey paper focuses on the deployment of AIGC applications, e.g., ChatGPT and Dall-E, at mobile edge networks, namely mobile AIGC networks, that provide personalized and customized AIGC services in real time while maintaining user privacy. We begin by introducing the background and fundamentals of generative models and the lifecycle of AIGC services at mobile AIGC networks, which includes data collection, training, finetuning, inference, and product management. We then discuss the collaborative cloud-edge-mobile infrastructure and technologies required to support AIGC services and enable users to access AIGC at mobile edge networks. Furthermore, we explore AIGCdriven creative applications and use cases for mobile AIGC networks. Additionally, we discuss the implementation, security, and privacy challenges of deploying mobile AIGC networks. Finally, we highlight some future research directions and open issues for the full realization of mobile AIGC networks

    Future Internet of Things: Connecting the Unconnected World and Things Based on 5/6G Networks and Embedded Technologies

    Get PDF
    Undeniably, the Internet of Things (IoT) ecosystem keeps on advancing at a fast speed, far above all predictions for growth and ubiquity. From sensor to cloud, this massive network continues to break technical limits in a variety of ways, and wireless sensor nodes are likely to become more prevalent as the number of Internet of Things devices increases into the trillions to connect the world and unconnected objects. However, their future in the IoT ecosystem remains uncertain, as various difficulties as with device connectivity, edge artificial intelligence (AI), security and privacy concerns, increased energy demands, the right technologies to use, and continue to attract opposite forces. This chapter provides a brief, forward-looking overview of recent trends, difficulties, and cutting-edge solutions for low-end IoT devices that use reconfigurable computing technologies like FPGA SoC and next-generation 5/6G networks. Tomorrow’s IoT devices will play a critical role. At the end of this chapter, an edge FPGA SoC computing-based IoT application is proposed, to be a novel edge computing for IoT solution with low power consumption and accelerated processing capability in data exchange

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment
    • …
    corecore