1,518 research outputs found

    Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory

    Full text link
    In Internet of Vehicles (IoV), data sharing among vehicles is essential to improve driving safety and enhance vehicular services. To ensure data sharing security and traceability, highefficiency Delegated Proof-of-Stake consensus scheme as a hard security solution is utilized to establish blockchain-enabled IoV (BIoV). However, as miners are selected from miner candidates by stake-based voting, it is difficult to defend against voting collusion between the candidates and compromised high-stake vehicles, which introduces serious security challenges to the BIoV. To address such challenges, we propose a soft security enhancement solution including two stages: (i) miner selection and (ii) block verification. In the first stage, a reputation-based voting scheme for the blockchain is proposed to ensure secure miner selection. This scheme evaluates candidates' reputation by using both historical interactions and recommended opinions from other vehicles. The candidates with high reputation are selected to be active miners and standby miners. In the second stage, to prevent internal collusion among the active miners, a newly generated block is further verified and audited by the standby miners. To incentivize the standby miners to participate in block verification, we formulate interactions between the active miners and the standby miners by using contract theory, which takes block verification security and delay into consideration. Numerical results based on a real-world dataset indicate that our schemes are secure and efficient for data sharing in BIoV.Comment: 12 pages, submitted for possible journal publicatio

    Blockchain-Enabled Federated Learning Approach for Vehicular Networks

    Full text link
    Data from interconnected vehicles may contain sensitive information such as location, driving behavior, personal identifiers, etc. Without adequate safeguards, sharing this data jeopardizes data privacy and system security. The current centralized data-sharing paradigm in these systems raises particular concerns about data privacy. Recognizing these challenges, the shift towards decentralized interactions in technology, as echoed by the principles of Industry 5.0, becomes paramount. This work is closely aligned with these principles, emphasizing decentralized, human-centric, and secure technological interactions in an interconnected vehicular ecosystem. To embody this, we propose a practical approach that merges two emerging technologies: Federated Learning (FL) and Blockchain. The integration of these technologies enables the creation of a decentralized vehicular network. In this setting, vehicles can learn from each other without compromising privacy while also ensuring data integrity and accountability. Initial experiments show that compared to conventional decentralized federated learning techniques, our proposed approach significantly enhances the performance and security of vehicular networks. The system's accuracy stands at 91.92\%. While this may appear to be low in comparison to state-of-the-art federated learning models, our work is noteworthy because, unlike others, it was achieved in a malicious vehicle setting. Despite the challenging environment, our method maintains high accuracy, making it a competent solution for preserving data privacy in vehicular networks.Comment: 7 page

    Empowering Communications in Vehicular Networkswith an Intelligent Blockchain-Based Solution

    Get PDF
    Blockchains have emerged over time as a reliable and secure way to record transactions in an immutable manner in a wide range of application domains. However, current related solutions are not yet capable of appropriately checking the authenticity of data when their volumes are huge. They are not also capable of updating Blockchain data blocks and synchronizing them within reasonable timeframes. This is the case within the specific context of Blockchain vehicular networks, where these solutions are commonly cumbersome when attempting to add new vehicles to the network. In order to address these problems, we propose in this paper a new Blockchain-based solution that intelligently implement selective communication and collaborative endorsement approaches to reduce communications between vehicles. Our solution represents the vehicles of the Blockchain as intelligent software agents with a Belief-Desire-Intention (BDI) architecture. Furthermore, we propose an approach based on multi-endorsement levels to exchange data of varying sensitive categories. This approach, which is based on endorsing scores, is also used to shorten the admission of new vehicles into the Blockchain. We run simulations using the Hyperledger Fabric Blockchain tool. Results show the efficiency of our solution in reducing the processing times of transactions within two different scenarios

    The use of a Blockchain-based System in Traffic Operations to promote Cooperation among Connected Vehicles

    Get PDF
    Abstract This paper intends to present some ideas for the implementation of cooperative ITS systems based on the Blockchain Technology (BT) concept. Blockchain technology has been recently introduced and, in this paper, we discuss a system that is based on a dedicated blockchain, able to involve both drivers and city administrations in the adoption of promising and innovative technologies that will create cooperation among connected vehicles. The proposed blockchain-based system can allow city administrators to reward drivers when they are willing to share travel data. The system manages in a special way the creation of new coins which are assigned to drivers and institutions participating actively in the system. Moreover, the system allows keeping a complete track of all transactions and interactions between drivers and city management on a completely open and shared platform. The main idea is to combine connected vehicles with BT to promote Cooperative ITS use and a better use of infrastructures
    • …
    corecore