32,309 research outputs found

    Intrinsic Inference on the Mean Geodesic of Planar Shapes and Tree Discrimination by Leaf Growth

    Full text link
    For planar landmark based shapes, taking into account the non-Euclidean geometry of the shape space, a statistical test for a common mean first geodesic principal component (GPC) is devised. It rests on one of two asymptotic scenarios, both of which are identical in a Euclidean geometry. For both scenarios, strong consistency and central limit theorems are established, along with an algorithm for the computation of a Ziezold mean geodesic. In application, this allows to verify the geodesic hypothesis for leaf growth of Canadian black poplars and to discriminate genetically different trees by observations of leaf shape growth over brief time intervals. With a test based on Procrustes tangent space coordinates, not involving the shape space's curvature, neither can be achieved.Comment: 28 pages, 4 figure

    Large sample theory of intrinsic and extrinsic sample means on manifolds--II

    Full text link
    This article develops nonparametric inference procedures for estimation and testing problems for means on manifolds. A central limit theorem for Frechet sample means is derived leading to an asymptotic distribution theory of intrinsic sample means on Riemannian manifolds. Central limit theorems are also obtained for extrinsic sample means w.r.t. an arbitrary embedding of a differentiable manifold in a Euclidean space. Bootstrap methods particularly suitable for these problems are presented. Applications are given to distributions on the sphere S^d (directional spaces), real projective space RP^{N-1} (axial spaces), complex projective space CP^{k-2} (planar shape spaces) w.r.t. Veronese-Whitney embeddings and a three-dimensional shape space \Sigma_3^4.Comment: Published at http://dx.doi.org/10.1214/009053605000000093 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Extrinsic local regression on manifold-valued data

    Get PDF
    We propose an extrinsic regression framework for modeling data with manifold valued responses and Euclidean predictors. Regression with manifold responses has wide applications in shape analysis, neuroscience, medical imaging and many other areas. Our approach embeds the manifold where the responses lie onto a higher dimensional Euclidean space, obtains a local regression estimate in that space, and then projects this estimate back onto the image of the manifold. Outside the regression setting both intrinsic and extrinsic approaches have been proposed for modeling i.i.d manifold-valued data. However, to our knowledge our work is the first to take an extrinsic approach to the regression problem. The proposed extrinsic regression framework is general, computationally efficient and theoretically appealing. Asymptotic distributions and convergence rates of the extrinsic regression estimates are derived and a large class of examples are considered indicating the wide applicability of our approach
    • …
    corecore