140 research outputs found

    Nonlinear Lattice Dynamics of Bose-Einstein Condensates

    Full text link
    The Fermi-Pasta-Ulam (FPU) model, which was proposed 50 years ago to examine thermalization in non-metallic solids and develop ``experimental'' techniques for studying nonlinear problems, continues to yield a wealth of results in the theory and applications of nonlinear Hamiltonian systems with many degrees of freedom. Inspired by the studies of this seminal model, solitary-wave dynamics in lattice dynamical systems have proven vitally important in a diverse range of physical problems--including energy relaxation in solids, denaturation of the DNA double strand, self-trapping of light in arrays of optical waveguides, and Bose-Einstein condensates (BECs) in optical lattices. BECS, in particular, due to their widely ranging and easily manipulated dynamical apparatuses--with one to three spatial dimensions, positive-to-negative tuning of the nonlinearity, one to multiple components, and numerous experimentally accessible external trapping potentials--provide one of the most fertile grounds for the analysis of solitary waves and their interactions. In this paper, we review recent research on BECs in the presence of deep periodic potentials, which can be reduced to nonlinear chains in appropriate circumstances. These reductions, in turn, exhibit many of the remarkable nonlinear structures (including solitons, intrinsic localized modes, and vortices) that lie at the heart of the nonlinear science research seeded by the FPU paradigm.Comment: 10 pages, revtex, two-columns, 3 figs, accepted fpr publication in Chaos's focus issue on the 50th anniversary of the publication of the Fermi-Pasta-Ulam problem; minor clarifications (and a couple corrected typos) from previous versio

    Bifurcations of discrete breathers in a diatomic Fermi-Pasta-Ulam chain

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. Such solutions are investigated for a diatomic Fermi-Pasta-Ulam chain, i. e., a chain of alternate heavy and light masses coupled by anharmonic forces. For hard interaction potentials, discrete breathers in this model are known to exist either as ``optic breathers'' with frequencies above the optic band, or as ``acoustic breathers'' with frequencies in the gap between the acoustic and the optic band. In this paper, bifurcations between different types of discrete breathers are found numerically, with the mass ratio m and the breather frequency omega as bifurcation parameters. We identify a period tripling bifurcation around optic breathers, which leads to new breather solutions with frequencies in the gap, and a second local bifurcation around acoustic breathers. These results provide new breather solutions of the FPU system which interpolate between the classical acoustic and optic modes. The two bifurcation lines originate from a particular ``corner'' in parameter space (omega,m). As parameters lie near this corner, we prove by means of a center manifold reduction that small amplitude solutions can be described by a four-dimensional reversible map. This allows us to derive formally a continuum limit differential equation which characterizes at leading order the numerically observed bifurcations.Comment: 30 pages, 10 figure

    The Anti-FPU Problem

    Full text link
    We present a detailed analysis of the modulational instability of the zone-boundary mode for one and higher-dimensional Fermi-Pasta-Ulam (FPU) lattices. Following this instability, a process of relaxation to equipartition takes place, which we have called the Anti-FPU problem because the energy is initially fed into the highest frequency part of the spectrum, at variance with the original FPU problem (low frequency excitations of the lattice). This process leads to the formation of chaotic breathers in both one and two dimensions. Finally, the system relaxes to energy equipartition on time scales which increase as the energy density is decreased. We show that breathers formed when cooling the lattice at the edges, starting from a random initial state, bear strong qualitative similarities with chaotic breathers

    Breathers and Thermal Relaxation in Fermi-Pasta-Ulam Arrays

    Get PDF
    Breather stability and longevity in thermally relaxing nonlinear arrays depend sensitively on their interactions with other excitations. We review the relaxation of breathers in Fermi-Pasta-Ulam arrays, with a specific focus on the different relaxation channels and their dependence on the interparticle interactions, dimensionality, initial condition, and system parameters

    Classical and quantum nonlinear localized excitations in discrete systems

    Get PDF
    Pre-pint tomado de ArxivDiscrete breathers, or intrinsic localized modes, are spatially localized, time–periodic, nonlinear excitations that can exist and propagate in systems of coupled dynamical units. Recently, some experiments show the sighting of a form of discrete breather that exist at the atomic scale in a magnetic solid. Other observations of breathers refer to systems such as Josephson–junction arrays, photonic crystals and optical-switching waveguide arrays. All these observations underscore their importance in physical phenomena at all scales. The authors review some of their latest theoretical contributions in the field of classical and quantum breathers, with possible applications to these widely different physical systems and to many other such as DNA, proteins, quantum dots, quantum computing, etc

    Breathers in oscillator chains with Hertzian interactions

    Full text link
    We prove nonexistence of breathers (spatially localized and time-periodic oscillations) for a class of Fermi-Pasta-Ulam lattices representing an uncompressed chain of beads interacting via Hertz's contact forces. We then consider the setting in which an additional on-site potential is present, motivated by the Newton's cradle under the effect of gravity. Using both direct numerical computations and a simplified asymptotic model of the oscillator chain, the so-called discrete p-Schr\"odinger (DpS) equation, we show the existence of discrete breathers and study their spectral properties and mobility. Due to the fully nonlinear character of Hertzian interactions, breathers are found to be much more localized than in classical nonlinear lattices and their motion occurs with less dispersion. In addition, we study numerically the excitation of a traveling breather after an impact at one end of a semi-infinite chain. This case is well described by the DpS equation when local oscillations are faster than binary collisions, a situation occuring e.g. in chains of stiff cantilevers decorated by spherical beads. When a hard anharmonic part is added to the local potential, a new type of traveling breather emerges, showing spontaneous direction-reversing in a spatially homogeneous system. Finally, the interaction of a moving breather with a point defect is also considered in the cradle system. Almost total breather reflections are observed at sufficiently high defect sizes, suggesting potential applications of such systems as shock wave reflectors

    Nonlinear waves in Newton's cradle and the discrete p-Schroedinger equation

    Full text link
    We study nonlinear waves in Newton's cradle, a classical mechanical system consisting of a chain of beads attached to linear pendula and interacting nonlinearly via Hertz's contact forces. We formally derive a spatially discrete modulation equation, for small amplitude nonlinear waves consisting of slow modulations of time-periodic linear oscillations. The fully-nonlinear and unilateral interactions between beads yield a nonstandard modulation equation that we call the discrete p-Schroedinger (DpS) equation. It consists of a spatial discretization of a generalized Schroedinger equation with p-Laplacian, with fractional p>2 depending on the exponent of Hertz's contact force. We show that the DpS equation admits explicit periodic travelling wave solutions, and numerically find a plethora of standing wave solutions given by the orbits of a discrete map, in particular spatially localized breather solutions. Using a modified Lyapunov-Schmidt technique, we prove the existence of exact periodic travelling waves in the chain of beads, close to the small amplitude modulated waves given by the DpS equation. Using numerical simulations, we show that the DpS equation captures several other important features of the dynamics in the weakly nonlinear regime, namely modulational instabilities, the existence of static and travelling breathers, and repulsive or attractive interactions of these localized structures
    corecore