7,658 research outputs found

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Efficient Deformable Shape Correspondence via Kernel Matching

    Full text link
    We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming. Surprisingly, in spite of the highly non-convex nature of the resulting quadratic assignment problem, our method converges to a semantically meaningful and continuous mapping in most of our experiments, and scales well. We provide preliminary theoretical analysis and several interpretations of the method.Comment: Accepted for oral presentation at 3DV 2017, including supplementary materia

    Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph

    Get PDF
    A standard way to approximate the distance between any two vertices pp and qq on a mesh is to compute, in the associated graph, a shortest path from pp to qq that goes through one of kk sources, which are well-chosen vertices. Precomputing the distance between each of the kk sources to all vertices of the graph yields an efficient computation of approximate distances between any two vertices. One standard method for choosing kk sources, which has been used extensively and successfully for isometry-invariant surface processing, is the so-called Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the farthest vertex from the already selected sources. In this paper, we analyze the stretch factor FFPS\mathcal{F}_{FPS} of approximate geodesics computed using FPS, which is the maximum, over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph. We show that FFPS\mathcal{F}_{FPS} can be bounded in terms of the minimal value F\mathcal{F}^* of the stretch factor obtained using an optimal placement of kk sources as FFPS2re2F+2re2+8re+1\mathcal{F}_{FPS}\leq 2 r_e^2 \mathcal{F}^*+ 2 r_e^2 + 8 r_e + 1, where rer_e is the ratio of the lengths of the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point sampling has been used successfully for isometry-invariant shape processing. Furthermore, we show that it is NP-complete to find kk sources that minimize the stretch factor.Comment: 13 pages, 4 figure

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Deformable shape matching

    Get PDF
    Deformable shape matching has become an important building block in academia as well as in industry. Given two three dimensional shapes A and B the deformation function f aligning A with B has to be found. The function is discretized by a set of corresponding point pairs. Unfortunately, the computation cost of a brute-force search of correspondences is exponential. Additionally, to be of any practical use the algorithm has to be able to deal with data coming directly from 3D scanner devices which suffers from acquisition problems like noise, holes as well as missing any information about topology. This dissertation presents novel solutions for solving shape matching: First, an algorithm estimating correspondences using a randomized search strategy is shown. Additionally, a planning step dramatically reducing the matching costs is incorporated. Using ideas of these both contributions, a method for matching multiple shapes at once is shown. The method facilitates the reconstruction of shape and motion from noisy data acquired with dynamic 3D scanners. Considering shape matching from another perspective a solution is shown using Markov Random Fields (MRF). Formulated as MRF, partial as well as full matches of a shape can be found. Here, belief propagation is utilized for inference computation in the MRF. Finally, an approach significantly reducing the space-time complexity of belief propagation for a wide spectrum of computer vision tasks is presented.Anpassung deformierbarer Formen ist zu einem wichtigen Baustein in der akademischen Welt sowie in der Industrie geworden. Gegeben zwei dreidimensionale Formen A und B, suchen wir nach einer Verformungsfunktion f, die die Deformation von A auf B abbildet. Die Funktion f wird durch eine Menge von korrespondierenden Punktepaaren diskretisiert. Leider sind die Berechnungskosten für eine Brute-Force-Suche dieser Korrespondenzen exponentiell. Um zusätzlich von einem praktischen Nutzen zu sein, muss der Suchalgorithmus in der Lage sein, mit Daten, die direkt aus 3D-Scanner kommen, umzugehen. Bedauerlicherweise leiden diese Daten unter Akquisitionsproblemen wie Rauschen, Löcher sowie fehlender Topologieinformation. In dieser Dissertation werden neue Lösungen für das Problem der Formanpassung präsentiert. Als erstes wird ein Algorithmus gezeigt, der die Korrespondenzen mittels einer randomisierten Suchstrategie schätzt. Zusätzlich wird anhand eines automatisch berechneten Schätzplanes die Geschwindigkeit der Suchstrategie verbessert. Danach wird ein Verfahren gezeigt, dass die Anpassung mehrerer Formen gleichzeitig bewerkstelligen kann. Diese Methode ermöglicht es, die Bewegung, sowie die eigentliche Struktur des Objektes aus verrauschten Daten, die mittels dynamischer 3D-Scanner aufgenommen wurden, zu rekonstruieren. Darauffolgend wird das Problem der Formanpassung aus einer anderen Perspektive betrachtet und als Markov-Netzwerk (MRF) reformuliert. Dieses ermöglicht es, die Formen auch stückweise aufeinander abzubilden. Die eigentliche Lösung wird mittels Belief Propagation berechnet. Schließlich wird ein Ansatz gezeigt, der die Speicher-Zeit-Komplexität von Belief Propagation für ein breites Spektrum von Computer-Vision Problemen erheblich reduziert

    Doctor of Philosophy

    Get PDF
    dissertationShape analysis is a well-established tool for processing surfaces. It is often a first step in performing tasks such as segmentation, symmetry detection, and finding correspondences between shapes. Shape analysis is traditionally employed on well-sampled surfaces where the geometry and topology is precisely known. When the form of the surface is that of a point cloud containing nonuniform sampling, noise, and incomplete measurements, traditional shape analysis methods perform poorly. Although one may first perform reconstruction on such a point cloud prior to performing shape analysis, if the geometry and topology is far from the true surface, then this can have an adverse impact on the subsequent analysis. Furthermore, for triangulated surfaces containing noise, thin sheets, and poorly shaped triangles, existing shape analysis methods can be highly unstable. This thesis explores methods of shape analysis applied directly to such defect-laden shapes. We first study the problem of surface reconstruction, in order to obtain a better understanding of the types of point clouds for which reconstruction methods contain difficulties. To this end, we have devised a benchmark for surface reconstruction, establishing a standard for measuring error in reconstruction. We then develop a new method for consistently orienting normals of such challenging point clouds by using a collection of harmonic functions, intrinsically defined on the point cloud. Next, we develop a new shape analysis tool which is tolerant to imperfections, by constructing distances directly on the point cloud defined as the likelihood of two points belonging to a mutually common medial ball, and apply this for segmentation and reconstruction. We extend this distance measure to define a diffusion process on the point cloud, tolerant to missing data, which is used for the purposes of matching incomplete shapes undergoing a nonrigid deformation. Lastly, we have developed an intrinsic method for multiresolution remeshing of a poor-quality triangulated surface via spectral bisection
    corecore