3,338 research outputs found

    Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors

    Get PDF
    Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness

    Using physical unclonable functions for hardware authentication: a survey

    Get PDF
    Physical unclonable functions (PUFs) are drawing a crescent interest in hardware oriented security due to their special characteristics of simplicity and safety. However, their nature as well as early stage of study makes them constitute currently a diverse and non-standardized set for designers. This work tries to establish one organization of existing PUF structures, giving guidelines for their choice, conditioning, and adaptation depending on the target application. In particular, it is described how using PUFs adequately could enlighten significantly most of the security primitives, making them very suitable for authenticating constrained resource platforms.Junta de AndalucĂ­a P08-TIC-03674Comunidad Europea FP7-INFSO-ICT-248858Ministerio de Ciencia y TecnologĂ­a TEC2008-04920, DPI2008-03847 y TEC2007-6510

    Printed Electronics-Based Physically Unclonable Functions for Lightweight Security in the Internet of Things

    Get PDF
    Die moderne Gesellschaft strebt mehr denn je nach digitaler KonnektivitĂ€t - ĂŒberall und zu jeder Zeit - was zu Megatrends wie dem Internet der Dinge (Internet of Things, IoT) fĂŒhrt. Bereits heute kommunizieren und interagieren „Dinge“ autonom miteinander und werden in Netzwerken verwaltet. In Zukunft werden Menschen, Daten und Dinge miteinander verbunden sein, was auch als Internet von Allem (Internet of Everything, IoE) bezeichnet wird. Milliarden von GerĂ€ten werden in unserer tĂ€glichen Umgebung allgegenwĂ€rtig sein und ĂŒber das Internet in Verbindung stehen. Als aufstrebende Technologie ist die gedruckte Elektronik (Printed Electronics, PE) ein SchlĂŒsselelement fĂŒr das IoE, indem sie neuartige GerĂ€tetypen mit freien Formfaktoren, neuen Materialien auf einer Vielzahl von Substraten mit sich bringt, die flexibel, transparent und biologisch abbaubar sein können. DarĂŒber hinaus ermöglicht PE neue Freiheitsgrade bei der Anpassbarkeit von Schaltkreisen sowie die kostengĂŒnstige und großflĂ€chige Herstellung am Einsatzort. Diese einzigartigen Eigenschaften von PE ergĂ€nzen herkömmliche Technologien auf Siliziumbasis. Additive Fertigungsprozesse ermöglichen die Realisierung von vielen zukunftstrĂ€chtigen Anwendungen wie intelligente Objekte, flexible Displays, Wearables im Gesundheitswesen, umweltfreundliche Elektronik, um einige zu nennen. Aus der Sicht des IoE ist die Integration und Verbindung von Milliarden heterogener GerĂ€te und Systeme eine der grĂ¶ĂŸten zu lösenden Herausforderungen. Komplexe HochleistungsgerĂ€te interagieren mit hochspezialisierten, leichtgewichtigen elektronischen GerĂ€ten, wie z.B. Smartphones mit intelligenten Sensoren. Daten werden in der Regel kontinuierlich gemessen, gespeichert und mit benachbarten GerĂ€ten oder in der Cloud ausgetauscht. Dabei wirft die FĂŒlle an gesammelten und verarbeiteten Daten Bedenken hinsichtlich des Datenschutzes und der Sicherheit auf. Herkömmliche kryptografische Operationen basieren typischerweise auf deterministischen Algorithmen, die eine hohe Schaltungs- und SystemkomplexitĂ€t erfordern, was sie wiederum fĂŒr viele leichtgewichtige GerĂ€te ungeeignet macht. Es existieren viele Anwendungsbereiche, in denen keine komplexen kryptografischen Operationen erforderlich sind, wie z.B. bei der GerĂ€teidentifikation und -authentifizierung. Dabei hĂ€ngt das Sicherheitslevel hauptsĂ€chlich von der QualitĂ€t der Entropiequelle und der VertrauenswĂŒrdigkeit der abgeleiteten SchlĂŒssel ab. Statistische Eigenschaften wie die Einzigartigkeit (Uniqueness) der SchlĂŒssel sind von großer Bedeutung, um einzelne EntitĂ€ten genau unterscheiden zu können. In den letzten Jahrzehnten hat die Hardware-intrinsische Sicherheit, insbesondere Physically Unclonable Functions (PUFs), eine große Strahlkraft hinsichtlich der Bereitstellung von Sicherheitsfunktionen fĂŒr IoT-GerĂ€te erlangt. PUFs verwenden ihre inhĂ€renten Variationen, um gerĂ€tespezifische eindeutige Kennungen abzuleiten, die mit FingerabdrĂŒcken in der Biometrie vergleichbar sind. Zu den grĂ¶ĂŸten Potenzialen dieser Technologie gehören die Verwendung einer echten Zufallsquelle, die Ableitung von SicherheitsschlĂŒsseln nach Bedarf sowie die inhĂ€rente SchlĂŒsselspeicherung. In Kombination mit den einzigartigen Merkmalen der PE-Technologie werden neue Möglichkeiten eröffnet, um leichtgewichtige elektronische GerĂ€te und Systeme abzusichern. Obwohl PE noch weit davon entfernt ist, so ausgereift und zuverlĂ€ssig wie die Siliziumtechnologie zu sein, wird in dieser Arbeit gezeigt, dass PE-basierte PUFs vielversprechende Sicherheitsprimitiven fĂŒr die SchlĂŒsselgenerierung zur eindeutigen GerĂ€teidentifikation im IoE sind. Dabei befasst sich diese Arbeit in erster Linie mit der Entwicklung, Untersuchung und Bewertung von PE-basierten PUFs, um Sicherheitsfunktionen fĂŒr ressourcenbeschrĂ€nkte gedruckte GerĂ€te und Systeme bereitzustellen. Im ersten Beitrag dieser Arbeit stellen wir das skalierbare, auf gedruckter Elektronik basierende Differential Circuit PUF (DiffC-PUF) Design vor, um sichere SchlĂŒssel fĂŒr Sicherheitsanwendungen fĂŒr ressourcenbeschrĂ€nkte GerĂ€te bereitzustellen. Die DiffC-PUF ist als hybride Systemarchitektur konzipiert, die siliziumbasierte und gedruckte Komponenten enthĂ€lt. Es wird eine eingebettete PUF-Plattform entwickelt, um die Charakterisierung von siliziumbasierten und gedruckten PUF-Cores in großem Maßstab zu ermöglichen. Im zweiten Beitrag dieser Arbeit werden siliziumbasierte PUF-Cores auf Basis diskreter Komponenten hergestellt und statistische Tests unter realistischen Betriebsbedingungen durchgefĂŒhrt. Eine umfassende experimentelle Analyse der PUF-Sicherheitsmetriken wird vorgestellt. Die Ergebnisse zeigen, dass die DiffC-PUF auf Siliziumbasis nahezu ideale Werte fĂŒr die Uniqueness- und Reliability-Metriken aufweist. DarĂŒber hinaus werden die IdentifikationsfĂ€higkeiten der DiffC-PUF untersucht, und es stellte sich heraus, dass zusĂ€tzliches Post-Processing die Identifizierbarkeit des Identifikationssystems weiter verbessern kann. Im dritten Beitrag dieser Arbeit wird zunĂ€chst ein Evaluierungsworkflow zur Simulation von DiffC-PUFs basierend auf gedruckter Elektronik vorgestellt, welche auch als Hybrid-PUFs bezeichnet werden. Hierbei wird eine Python-basierte Simulationsumgebung vorgestellt, welche es ermöglicht, die Eigenschaften und Variationen gedruckter PUF-Cores basierend auf Monte Carlo (MC) Simulationen zu untersuchen. Die Simulationsergebnisse zeigen, dass die Sicherheitsmetriken im besten Betriebspunkt nahezu ideal sind. Des Weiteren werden angefertigte PE-basierte PUF-Cores fĂŒr statistische Tests unter verschiedenen Betriebsbedingungen, einschließlich Schwankungen der Umgebungstemperatur, der relativen Luftfeuchtigkeit und der Versorgungsspannung betrieben. Die experimentell bestimmten Resultate der Uniqueness-, Bit-Aliasing- und Uniformity-Metriken stimmen gut mit den Simulationsergebnissen ĂŒberein. Der experimentell ermittelte durchschnittliche Reliability-Wert ist relativ niedrig, was durch die fehlende Passivierung und Einkapselung der gedruckten Transistoren erklĂ€rt werden kann. Die Untersuchung der IdentifikationsfĂ€higkeiten basierend auf den PUF-Responses zeigt, dass die Hybrid-PUF ohne zusĂ€tzliches Post-Processing nicht fĂŒr kryptografische Anwendungen geeignet ist. Die Ergebnisse zeigen aber auch, dass sich die Hybrid-PUF zur GerĂ€teidentifikation eignet. Der letzte Beitrag besteht darin, in die Perspektive eines Angreifers zu wechseln. Um die SicherheitsfĂ€higkeiten der Hybrid-PUF beurteilen zu können, wird eine umfassende Sicherheitsanalyse nach Art einer Kryptoanalyse durchgefĂŒhrt. Die Analyse der Entropie der Hybrid-PUF zeigt, dass seine AnfĂ€lligkeit fĂŒr Angriffe auf Modellbasis hauptsĂ€chlich von der eingesetzten Methode zur Generierung der PUF-Challenges abhĂ€ngt. DarĂŒber hinaus wird ein Angriffsmodell eingefĂŒhrt, um die Leistung verschiedener mathematischer Klonangriffe auf der Grundlage von abgehörten Challenge-Response Pairs (CRPs) zu bewerten. Um die Hybrid-PUF zu klonen, wird ein Sortieralgorithmus eingefĂŒhrt und mit hĂ€ufig verwendeten Classifiers fĂŒr ĂŒberwachtes maschinelles Lernen (ML) verglichen, einschließlich logistischer Regression (LR), Random Forest (RF) sowie Multi-Layer Perceptron (MLP). Die Ergebnisse zeigen, dass die Hybrid-PUF anfĂ€llig fĂŒr modellbasierte Angriffe ist. Der Sortieralgorithmus profitiert von kĂŒrzeren Trainingszeiten im Vergleich zu den ML-Algorithmen. Im Falle von fehlerhaft abgehörten CRPs ĂŒbertreffen die ML-Algorithmen den Sortieralgorithmus

    Stochastic Memory Devices for Security and Computing

    Get PDF
    With the widespread use of mobile computing and internet of things, secured communication and chip authentication have become extremely important. Hardware-based security concepts generally provide the best performance in terms of a good standard of security, low power consumption, and large-area density. In these concepts, the stochastic properties of nanoscale devices, such as the physical and geometrical variations of the process, are harnessed for true random number generators (TRNGs) and physical unclonable functions (PUFs). Emerging memory devices, such as resistive-switching memory (RRAM), phase-change memory (PCM), and spin-transfer torque magnetic memory (STT-MRAM), rely on a unique combination of physical mechanisms for transport and switching, thus appear to be an ideal source of entropy for TRNGs and PUFs. An overview of stochastic phenomena in memory devices and their use for developing security and computing primitives is provided. First, a broad classification of methods to generate true random numbers via the stochastic properties of nanoscale devices is presented. Then, practical implementations of stochastic TRNGs, such as hardware security and stochastic computing, are shown. Finally, future challenges to stochastic memory development are discussed

    Subwavelength Engineering of Silicon Photonic Waveguides

    Get PDF
    The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core building block of modern integrated photonic systems. Subwavelength structuring of silicon waveguides shows immense promise in a variety of field of study, such as, tailoring electromagnetic near fields, enhancing light-matter interactions, engineering anisotropy and effective medium effects, modal and dispersion engineering, nanoscale sensitivity etc. In this work, we are going to exploit the boundary conditions of modern silicon photonics through subwavelength engineering by means of novel ultra-low mode area v-groove waveguide to answer long-lasting challenges, such as, fabrication of such sophisticated structure while ensuring efficient coupling of light between dissimilar modes. Moreover, physical unclonable function derived from our nanoscale sidewall crystalline gratings should give us a fast and reliable optical security solution with improved information density. This research should enable new avenues of subwavelength engineered silicon photonic waveguide and answer to many unsolved questions of silicon photonics foundries
    • 

    corecore