735 research outputs found

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Localized Manifold Harmonics for Spectral Shape Analysis

    Get PDF
    The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence. We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing localized bases

    LOCA: LOcal Conformal Autoencoder for standardized data coordinates

    Full text link
    We propose a deep-learning based method for obtaining standardized data coordinates from scientific measurements.Data observations are modeled as samples from an unknown, non-linear deformation of an underlying Riemannian manifold, which is parametrized by a few normalized latent variables. By leveraging a repeated measurement sampling strategy, we present a method for learning an embedding in Rd\mathbb{R}^d that is isometric to the latent variables of the manifold. These data coordinates, being invariant under smooth changes of variables, enable matching between different instrumental observations of the same phenomenon. Our embedding is obtained using a LOcal Conformal Autoencoder (LOCA), an algorithm that constructs an embedding to rectify deformations by using a local z-scoring procedure while preserving relevant geometric information. We demonstrate the isometric embedding properties of LOCA on various model settings and observe that it exhibits promising interpolation and extrapolation capabilities. Finally, we apply LOCA to single-site Wi-Fi localization data, and to 33-dimensional curved surface estimation based on a 22-dimensional projection

    Optimal intrinsic descriptors for non-rigid shape analysis

    Get PDF
    We propose novel point descriptors for 3D shapes with the potential to match two shapes representing the same object undergoing natural deformations. These deformations are more general than the often assumed isometries, and we use labeled training data to learn optimal descriptors for such cases. Furthermore, instead of explicitly defining the descriptor, we introduce new Mercer kernels, for which we formally show that their corresponding feature space mapping is a generalization of either the Heat Kernel Signature or the Wave Kernel Signature. I.e. the proposed descriptors are guaranteed to be at least as precise as any Heat Kernel Signature or Wave Kernel Signature of any parameterisation. In experiments, we show that our implicitly defined, infinite-dimensional descriptors can better deal with non-isometric deformations than state-of-the-art methods

    Geometric deep learning for shape analysis: extending deep learning techniques to non-Euclidean manifolds

    Get PDF
    The past decade in computer vision research has witnessed the re-emergence of artificial neural networks (ANN), and in particular convolutional neural network (CNN) techniques, allowing to learn powerful feature representations from large collections of data. Nowadays these techniques are better known under the umbrella term deep learning and have achieved a breakthrough in performance in a wide range of image analysis applications such as image classification, segmentation, and annotation. Nevertheless, when attempting to apply deep learning paradigms to 3D shapes one has to face fundamental differences between images and geometric objects. The main difference between images and 3D shapes is the non-Euclidean nature of the latter. This implies that basic operations, such as linear combination or convolution, that are taken for granted in the Euclidean case, are not even well defined on non-Euclidean domains. This happens to be the major obstacle that so far has precluded the successful application of deep learning methods on non-Euclidean geometric data. The goal of this thesis is to overcome this obstacle by extending deep learning tecniques (including, but not limiting to CNNs) to non-Euclidean domains. We present different approaches providing such extension and test their effectiveness in the context of shape similarity and correspondence applications. The proposed approaches are evaluated on several challenging experiments, achieving state-of-the- art results significantly outperforming other methods. To the best of our knowledge, this thesis presents different original contributions. First, this work pioneers the generalization of CNNs to discrete manifolds. Second, it provides an alternative formulation of the spectral convolution operation in terms of the windowed Fourier transform to overcome the drawbacks of the Fourier one. Third, it introduces a spatial domain formulation of convolution operation using patch operators and several ways of their construction (geodesic, anisotropic diffusion, mixture of Gaussians). Fourth, at the moment of publication the proposed approaches achieved state-of-the-art results in different computer graphics and vision applications such as shape descriptors and correspondence
    • …
    corecore