4,410 research outputs found

    TempoCave: Visualizing Dynamic Connectome Datasets to Support Cognitive Behavioral Therapy

    Get PDF
    We introduce TempoCave, a novel visualization application for analyzing dynamic brain networks, or connectomes. TempoCave provides a range of functionality to explore metrics related to the activity patterns and modular affiliations of different regions in the brain. These patterns are calculated by processing raw data retrieved functional magnetic resonance imaging (fMRI) scans, which creates a network of weighted edges between each brain region, where the weight indicates how likely these regions are to activate synchronously. In particular, we support the analysis needs of clinical psychologists, who examine these modular affiliations and weighted edges and their temporal dynamics, utilizing them to understand relationships between neurological disorders and brain activity, which could have a significant impact on the way in which patients are diagnosed and treated. We summarize the core functionality of TempoCave, which supports a range of comparative tasks, and runs both in a desktop mode and in an immersive mode. Furthermore, we present a real-world use case that analyzes pre- and post-treatment connectome datasets from 27 subjects in a clinical study investigating the use of cognitive behavior therapy to treat major depression disorder, indicating that TempoCave can provide new insight into the dynamic behavior of the human brain

    VIOLA - A multi-purpose and web-based visualization tool for neuronal-network simulation output

    Full text link
    Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.Comment: 38 pages, 10 figures, 3 table

    Visual Exploration And Information Analytics Of High-Dimensional Medical Images

    Get PDF
    Data visualization has transformed how we analyze increasingly large and complex data sets. Advanced visual tools logically represent data in a way that communicates the most important information inherent within it and culminate the analysis with an insightful conclusion. Automated analysis disciplines - such as data mining, machine learning, and statistics - have traditionally been the most dominant fields for data analysis. It has been complemented with a near-ubiquitous adoption of specialized hardware and software environments that handle the storage, retrieval, and pre- and postprocessing of digital data. The addition of interactive visualization tools allows an active human participant in the model creation process. The advantage is a data-driven approach where the constraints and assumptions of the model can be explored and chosen based on human insight and confirmed on demand by the analytic system. This translates to a better understanding of data and a more effective knowledge discovery. This trend has become very popular across various domains, not limited to machine learning, simulation, computer vision, genetics, stock market, data mining, and geography. In this dissertation, we highlight the role of visualization within the context of medical image analysis in the field of neuroimaging. The analysis of brain images has uncovered amazing traits about its underlying dynamics. Multiple image modalities capture qualitatively different internal brain mechanisms and abstract it within the information space of that modality. Computational studies based on these modalities help correlate the high-level brain function measurements with abnormal human behavior. These functional maps are easily projected in the physical space through accurate 3-D brain reconstructions and visualized in excellent detail from different anatomical vantage points. Statistical models built for comparative analysis across subject groups test for significant variance within the features and localize abnormal behaviors contextualizing the high-level brain activity. Currently, the task of identifying the features is based on empirical evidence, and preparing data for testing is time-consuming. Correlations among features are usually ignored due to lack of insight. With a multitude of features available and with new emerging modalities appearing, the process of identifying the salient features and their interdependencies becomes more difficult to perceive. This limits the analysis only to certain discernible features, thus limiting human judgments regarding the most important process that governs the symptom and hinders prediction. These shortcomings can be addressed using an analytical system that leverages data-driven techniques for guiding the user toward discovering relevant hypotheses. The research contributions within this dissertation encompass multidisciplinary fields of study not limited to geometry processing, computer vision, and 3-D visualization. However, the principal achievement of this research is the design and development of an interactive system for multimodality integration of medical images. The research proceeds in various stages, which are important to reach the desired goal. The different stages are briefly described as follows: First, we develop a rigorous geometry computation framework for brain surface matching. The brain is a highly convoluted structure of closed topology. Surface parameterization explicitly captures the non-Euclidean geometry of the cortical surface and helps derive a more accurate registration of brain surfaces. We describe a technique based on conformal parameterization that creates a bijective mapping to the canonical domain, where surface operations can be performed with improved efficiency and feasibility. Subdividing the brain into a finite set of anatomical elements provides the structural basis for a categorical division of anatomical view points and a spatial context for statistical analysis. We present statistically significant results of our analysis into functional and morphological features for a variety of brain disorders. Second, we design and develop an intelligent and interactive system for visual analysis of brain disorders by utilizing the complete feature space across all modalities. Each subdivided anatomical unit is specialized by a vector of features that overlap within that element. The analytical framework provides the necessary interactivity for exploration of salient features and discovering relevant hypotheses. It provides visualization tools for confirming model results and an easy-to-use interface for manipulating parameters for feature selection and filtering. It provides coordinated display views for visualizing multiple features across multiple subject groups, visual representations for highlighting interdependencies and correlations between features, and an efficient data-management solution for maintaining provenance and issuing formal data queries to the back end

    The intrinsic geometry of the human brain connectome

    Get PDF

    TempoCave: Visualizing Dynamic Connectome Datasets to Support Cognitive Behavioral Therapy

    Full text link
    We introduce TempoCave, a novel visualization application for analyzing dynamic brain networks, or connectomes. TempoCave provides a range of functionality to explore metrics related to the activity patterns and modular affiliations of different regions in the brain. These patterns are calculated by processing raw data retrieved functional magnetic resonance imaging (fMRI) scans, which creates a network of weighted edges between each brain region, where the weight indicates how likely these regions are to activate synchronously. In particular, we support the analysis needs of clinical psychologists, who examine these modular affiliations and weighted edges and their temporal dynamics, utilizing them to understand relationships between neurological disorders and brain activity, which could have a significant impact on the way in which patients are diagnosed and treated. We summarize the core functionality of TempoCave, which supports a range of comparative tasks, and runs both in a desktop mode and in an immersive mode. Furthermore, we present a real-world use case that analyzes pre- and post-treatment connectome datasets from 27 subjects in a clinical study investigating the use of cognitive behavior therapy to treat major depression disorder, indicating that TempoCave can provide new insight into the dynamic behavior of the human brain
    corecore