95 research outputs found

    Impact on Hybrid Composite Materials

    Get PDF

    Reinforced Polymer Composites

    Get PDF
    This book, consisting of 21 articles, including three review papers, written by research groups of experts in the field, considers recent research on reinforced polymer composites. Most of them relate to the fiber-reinforced polymer composites, which are a real hot topic in the field. Depending on the reinforcing fiber nature, such composites are divided into synthetic and natural fiber-reinforced ones. Synthetic fibers, such as carbon, glass, or basalt, provide more stiffness, while natural fibers, such as jute, flax, bamboo, kenaf, and others, are inexpensive and biodegradable, making them environmentally friendly. To acquire the benefits of design flexibility and recycling possibilities, natural reinforcers can be hybridized with small amounts of synthetic fibers to make them more desirable for technical applications. Elaborated composites have great potential as structural materials in automotive, marine and aerospace application, as fire resistant concrete, in bridge systems, as mechanical gear pair, as biomedical materials for dentistry and orthopedic application and tissue engineering, as well as functional materials such as proton-exchange membranes, biodegradable superabsorbent resins and polymer electrolytes

    Thermoplastic polyurethane composites for railway applications: experimental and numerical study of hybrid laminates with improved impact resistance

    Get PDF
    Due to the introduction of highly restrictive safety and pollution legislations in the railway industry, weight reduction has become an increasingly important topic over the last decade. Carbon fibre-reinforced polymers (CFRPs) constitute an excellent alternative to traditional materials, due to their highly specific in-plane mechanical properties. Their use in railway industry, however, is currently hindered by their weak out-of-plane properties. Bogies and underframes are often subjected to impact loadings caused by objects and debris surrounding the tracks (i.e. ice, ballast) that become airborne during the train transit and impact lower part of the carriage. While metal structures absorb impact energy via plastic deformation, barely visible impact damage can occur in CFRP, weakening the component, and often leading to catastrophic failures. This work proposes a method for the improvement of impact absorption performance of railway composite structures via the addition of a thermoplastic polyurethane (TPU) coating to CFRP laminates. The thermomechanical behaviour of the thermoplastic layer was investigated with dynamic mechanical analysis and differential scanning calorimetry analysis to optimize the manufacturing process, while damping tests were carried out to demonstrate its unaltered energy absorption ability in the final manufactured structure. TPU/CFRP plates (150 × 100 mm ² of in-plane size) were subjected to 2, 3 and 5 J impacts, and the results were compared with those of traditional CFRP laminates. Non-destructive test (NDT; i.e. C-scan, phased array) and compression-after-impact test were carried out on the impacted samples to assess the damaged area and residual in-plane mechanical properties. Results show that the TPU layer modifies the energy absorption mechanism, preventing the propagation of damage within the CFRP and resulting in undamaged samples even at the highest energy. To predict the TPU/CFRP impact behaviour and identify the best process parameters to optimize impact energy absorption, a finite element model was developed and validated using experimental data. The comparison showed good correlation, and a fine approximation of the different impact mechanisms was observed with a maximum error of 5% between experimental and simulated output values. The experimental and numerical results show that the TPU/CFRP laminates constitute a novel solution for the manufacturing of lighter and safer railway composite structures

    Learning from nature: Bio-Inspiration for damage-tolerant high-performance fibre-reinforced composites

    Get PDF
    Over millions of years Nature has attained highly optimized structural designs with remarkable toughness, strength, damage resistance and damage tolerance - properties that are so far difficult to combine in artificial high-performance fibre-reinforced polymers (HPFRPs). Recent studies, which have successfully replicated the structures and especially the toughening mechanisms found in flora and fauna, are reviewed in this work. At the core of the manufacturing of damage-tolerant bio-inspired composites, an understanding of the design principles and mechanisms is key. Universal and naturally-inherent design features, such as hierarchical- and organic-inorganic-structures as well as helical or fibrous arrangements of building blocks were found to promote numerous toughening mechanisms. Common to these features, the outstanding ability of diffusing damage at a sub-critical state has been identified as a powerful and effective mechanism to achieve high damage tolerance. Novel manufacturing processes suitable for HPFRP (such as tailored high-precision tape placement, micro-moulding, laser-engraving and additive manufacturing) have recently gained immense traction in the research community. This stems from the achievable and required geometrical complexity for HPFRPs and the replication of subtly balanced interaction between the material constituents. Even though trends in the literature clearly show that a bio-inspired material design philosophy is a successful strategy to design more efficient composite structures with enhanced damage tolerance and mechanical performance, Nature continues to offer new challenging opportunities yet to be explored, which could lead to a new era of HPFRP composites

    Joining of Dissimilar Materials

    Get PDF
    Material manufacturers and engineering structure designers are currently focusing new ways to exploit the benefits of light-weight, hybrid materials with improved properties at a low cost. The ability to join dissimilar materials is enabling the design engineers to develop light-weight and efficient automobiles, aircraft and space vehicles. The objective of this PhD research study was to produce alternative and efficient joining solutions for automotive and aerospace applications. The joining of dissimilar material was experimented to obtain light-weight Fibre Reinforced Polymer (FRP) sandwich composites, Al-foam sandwich (AFS) composites, hybrid dynamic FRP epoxy/polyurethane composites and the joining of Ti6Al4V alloy with and without surface modification to Ceramic Matrix Composite (CMC) and itself. The joining of Al-foam and Al-honeycomb to FRP skins was performed. The experimental results show that higher flexural properties can be achieved by replacing Al-honeycomb with low-cost Al-foam as a core material in the sandwich structures. Compared to FRP-honeycomb sandwich panels, FRP-Al foam sandwich panels display ~25 % and ~65 % higher flexural strength in a long and short span three-point bending tests respectively. AFS composites with complete metallic character, to withstand high-temperature application conditions, were produced by soldering/brazing techniques using Zn-based and Al-based joining alloys. A post-brazing thermal treatment was designed to recover the mechanical properties of AFS composites, lost during the soldering/brazing process. The microstructural analysis of the Al-skin/Al-foam interface revealed that the diffusion of joining materials into the joining substrates (Al-sheet and Al-foam) was achieved. Around 80% higher bending load before failure was observed when the AFS specimens produced with Zn-based joining alloys were subjected to flexural load compared to those produced with Al-based joining alloys. Hybrid dynamic Carbon Fibre Reinforced Polymer (CFRP) composites with enhanced impact properties were produced by exploiting the reversible cross-linking functionalities of dynamic epoxy and dynamic PU resin systems. By joining dynamic CFRP-epoxy and dynamic CFR-PU laminates, hybrid dynamic composite in three different configurations and a non-hybrid composite were obtained. The four dynamic composites were characterised for structural, thermal, flexural and impact properties. The damage initiation upon impact was observed at around 95% higher energy level in the hybrid configuration (CFRP-4), compared to the non-hybrid configuration. The hybrid configuration CFRP-3 responded with around 55% higher perforation threshold energy compared the non-hybrid configuration. Preliminary work on Adhesive joining of the Ti6Al4V alloy to itself was performed to analyse the effect micro-machining on adhesion and the effect of shape/design of micro-slots on an adhesive joint strength. Three types of micro-slots: V, semi-circle and U-shaped micro-slots were produced on Ti6Al4V sheet surface by using an in-house developed Micro-Electro-Discharge Machining (Micro-EDM) setup. Ti6Al4V alloy specimens with and without micro-machined surfaces were bonded together using a commercial epoxy adhesive. The Single Lap Offset (SLO) shear test results revealed that the micro-slot oriented perpendicular to the applied load displayed ~23 % higher joining strength compared to when the micro-slots were oriented parallel to the applied load. U-shaped micro-slots configuration displayed ~30 % improvement in the joint shear strength compared to the specimens with un-modified surfaces. The fractured surfaces analysis revealed mix (adhesive-cohesive) with cohesive dominated failure in bonded specimens with micro-machined surfaces compared to the as-received where pure adhesive failure was observed. The joining of CMCs (C/SiC and SiC/SiC) to Ti6Al4V alloy was experimented using active brazing alloy (Cusil-ABA) and Zr-based brazing alloy (TiB590) in a pressure-less argon atmosphere. The CMC-Ti6Al4V joint strength was further improved by modifying the surface of Ti6Al4V alloy using an in-house built Micro-EDM setup. Around 40% higher joining strength was recorded when the Zr-based brazing alloy was used as a joining material compared to the conventional active brazing alloy, Cusil-ABA. Improvement in the joining strength was noticed when the Ti6Al4V surface was modified prior to joining

    Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives

    Get PDF
    © 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Sustainability and environmental protection have given rise to the use of renewable and biobased materials in several application areas. Fibre reinforced composites are currently gaining a high market value in both structural and semi-structural applications. Making these materials environmentally friendly, renewable and lighter will protect the environment and increase resource use efficiency. Opposed to synthetic fibres such as carbon and glass, natural plant fibres are less expensive, lighter, degradable, easy to produce, non-toxic and environmentally friendly. However, natural plant fibres are inferior to their synthetic counterparts in both mechanical performance and tolerance to harsh environmental conditions. One method of compensating for these disadvantages is to combine natural and synthetic fibres in a single matrix forming a hybrid composite where the disadvantages of one are compensated by the other. In this way, sustainability and cost minimisation are achieved with acceptable mechanical and physical responses. However, successful implementation and advancement in the development of natural plant fibre reinforced polymer (FRP) hybrid composites require the development of workable conceptual design, suitable manufacturing techniques and understanding of the strengthening mechanisms. The main objectives of this review are to critically review the current state of knowledge in the development of natural FRP hybrid composites, outlining their properties and enhancing them while reducing environmental impact of the product through the hybridisation approach.Peer reviewe

    ECO-COMPASS

    Get PDF
    Today, mainly man-made materials, such as carbon and glass fibers, are used to produce composite parts in aviation. Renewable materials, such as natural fibers or bio-sourced resin systems, have not yet found their way into aviation. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibers such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a Life Cycle Assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. This Special Issue provides selected papers from the project consortium partners
    • …
    corecore