24 research outputs found

    Late Morbidity (Dysphagia) in Head and Neck Cancer after Radiotherapy using various Treatment Techniques

    Get PDF
    Oropharyngeal Cancer (Chapter 2) Good tumor control but late-side effects occur e.g. dysphagia. Quality of Life: Dysphagia (Chapters 3-6) Dose-effects relationships in base of tongue, tonsillar fossa and nasopharyngeal cancer are found for swallowing problems. Quality of Lfe: Trismus (Chapter 7) Dose-effects relationships in base of tongue and tonsillar fossa are found for trismus problems. Brachytherapy (Chapters 8-10) Patient treated by brachyhterapy have better local control, disease-free survival and overal survival than those treated with EBRT. Also BT patients were found to have fewer swallowing problems compared with the non-BT group of patients. Hyperbaric Oxygen (Chapter 11) A great benefit for the quality of life of patients was seen in patients who were randomized for hyperbaric oxygen after radiotherapy. A significant difference of different aspects of quality of life was seen for H&N35 ‘swallowing problems’, H&N35 ‘sticky saliva’, H&N35 ‘dry mouth’, visual analogue scale (VAS) ‘Dry mouth’, PSS ‘eating in public’ and VAS ‘pain in mouth’ in favor of the hyperbaric oxygen group. Non-Rigid Registration / Atlas-Based Auto-Segmentation (Chapters 12-14) Non-rigid registration method is a powerful tool to accurately assess local shape and position changes in HNC patients. When using ABAS, edited auto-contours were somewhat more in concordance with the corresponding levels of this atlas as opposed to the originally contoured levels

    Volume 30, issue 4

    Get PDF
    The mission of CJS is to contribute to the effective continuing medical education of Canadian surgical specialists, using innovative techniques when feasible, and to provide surgeons with an effective vehicle for the dissemination of observations in the areas of clinical and basic science research. Visit the journal website at http://canjsurg.ca/ for more.https://ir.lib.uwo.ca/cjs/1218/thumbnail.jp

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    Pheochromocytoma

    Get PDF
    The book is divided into six sections. The first three sections focus on the pathophysiology of the disease, showing anatomo- and histopathological aspects, experimental models and signaling pathways and programmed cell death related to pheochromocytoma. The fourth discusses some specific aspects of clinical presentation, with emphasis on clinical manifestations of headache and heart. The fifth section focuses on clinical diagnosis, laboratory and imaging, including differential diagnosis. Finally, the last section discusses the treatment of pheochromocytoma showing clinical cases, a case about undiagnosed pheochromocytoma complicated with multiple organ failure and other cases about catecholamine-secreting hereditary tumors. Thus, this book shows the disease "pheochromocytoma" in a different perspective from the traditional approach. Enjoy your reading

    Raman spectroscopy of biological tissue for application in optical diagnosis of malignancy

    Get PDF
    The use of Raman spectroscopy in the detection and classification of malignancy within the human larynx and lymph nodes of the head and neck has been evaluated. Currently histopathology is considered the diagnostic gold standard. The potential for Raman spectroscopy to be used as an in vivo diagnostic tool in the detection of dysplasia and malignancy has been demonstrated. A consensus opinion from three expert histopathologists has been obtained and spectral diagnostic models developed by correlation with these results. The ability of Raman spectroscopy to differentiate between disease entities and normal tissue within the larynx has been shown. Raman spectroscopy was able to identify non-neoplastic vocal cord mucosa (sensitivity 85 %, specificity 95%) from laryngeal mucosa showing neoplastic change (sensitivity 95 %, specificity 85%) with an increase in sensitivity to 89% for the non-neoplastic tissue and a reduction to73% in tissues showing neoplastic changes after cross-validation. For the first time benign changes in the structure of vocal cords such as those exhibiting hyperkeratosis and hyperplasia, where also identified with sensitivity of 97.9% for tissue exhibiting hyperplasia/hyperkeratosis and 100% for normal squamous cell epithelium. Research into the ability of Raman spectroscopy to interrogate lymphoid tissue in order to differentiate reactive nodes (sensitivity 90 %, specificity 88%) from those containing cancer (sensitivity 88 %, specificity 90%) was successful and fully independently validated. This work was further developed and the efficacy of Raman spectroscopy in differentiating between squamous cell carcinoma (sensitivity 76%, specificity 95%), adenocarcinoma (sensitivity 93 %, specificity 99%), Hodgkin‘s lymphoma (sensitivity 80%, specificity 90%) and reactive lymph nodes (sensitivity 81%, specificity 88%) was shown. This model was also independently cross-validated by node producing further improvements to give a spectral performance of sensitivity/specificity for SCC of 75/97%, adenocarcinoma 100/99%, Hodgkin‘s lymphoma 83/92% and reactive lymph nodes 85/86%.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    OPTICAL COHERENCE TOMOGRAPHY FOR NEUROSURGEY AND CANCER RESEARCH

    Get PDF
    Optical Coherence Tomography (OCT) provides non-labeling, real-time and high resolution images, which has the potential to transform the paradigm of surgical guidance and preclinical animal studies. The design and development of OCT devices for neurosurgery guidance and novel imaging algorithms for monitoring anti-cancer therapy have been pursued in this work. A forward-imaging needle-type OCT probe was developed which can fit into minimally invasive tools (I.D. ~ 1mm), detect the at-risk blood vessels, and identify tissue micro-landmarks. This promising guidance tool improves the safety and the accuracy of needle-based procedures, which are currently performed without imaging feedback. Despite the great imaging capability, OCT is limited by the shallow imaging depth (1-2 mm). In order to address this issue, the first MRI compatible OCT system has been developed. The multi-scale and multi-contrast MRI/OCT imaging combination significantly improves the accuracy of intra-operative MRI by two orders (from 1mm to 0.01 mm). In contrast to imaging systems, a thin (0.125 mm), low-cost (1/10 cost of OCT system) and simple fiber sensor technology called coherence gated Doppler (CGD) was developed which can be integrated with many surgical tools and aid in the avoidance of intracranial hemorrhage. Furthermore, intra-vital OCT is a powerful tool to study the mechanism of anti-cancer therapy. Photo-immunotherapy (PIT) is a low-side-effect cancer therapy based on an armed antibody conjugate that induces highly selective cancer cell necrosis after exposure to near infrared light both in vitro and in vivo. With novel algorithms that remove the bulk motion and track the vessel lumen automatically, OCT reveals dramatic hemodynamic changes during PIT and helps to elucidate the mechanisms behind the PIT treatment. The transformative guidance tools and the novel image processing algorithms pave a new avenue to better clinical outcomes and preclinical animal studies

    Spine Surgery

    Get PDF
    We are very excited to introduce this new book on spinal surgery, which follows the curriculum of the EUROSPINE basic and advanced diploma courses. The approach we take is a purely case-based one, in which each case illustrates the concepts surrounding the treatment of a given pathology, including the uncertainties and problems in decision-making. The readers will notice that in many instances a lack of evidence for a given treatment exists. So decisions taken are usually not a clearcut matter of black or white, but merely different shades of gray. Probably in a lot of cases, there is often more than one option to treat the patient. The authors were asked to convey this message to the reader, giving him a guidance as what would be accepted within the mainstream. In addition, the reader is provided with the most updated literature and evidence on the topic. Most of the authors are teachers in the courses of EUROSPINE or other national societies with often vast clinical experience and have given their own perspective and reasoning. We believe that the readers will profit very much from this variety and bandwidth of knowledge provided for them in the individual chapters. We have given the authors extensive liberty as to what they consider the best solution for their case. It is thus a representative picture of what is considered standard of care for spine pathologies in Europe. We hope that this book will be an ideal complement for trainees to the courses they take. Munich, Germany Bernhard Meyer Offenbach, Germany Michael Rauschman

    Medical-Data-Models.org:A collection of freely available forms (September 2016)

    Full text link
    MDM-Portal (Medical Data-Models) is a meta-data repository for creating, analysing, sharing and reusing medical forms, developed by the Institute of Medical Informatics, University of Muenster in Germany. Electronic forms for documentation of patient data are an integral part within the workflow of physicians. A huge amount of data is collected either through routine documentation forms (EHRs) for electronic health records or as case report forms (CRFs) for clinical trials. This raises major scientific challenges for health care, since different health information systems are not necessarily compatible with each other and thus information exchange of structured data is hampered. Software vendors provide a variety of individual documentation forms according to their standard contracts, which function as isolated applications. Furthermore, free availability of those forms is rarely the case. Currently less than 5 % of medical forms are freely accessible. Based on this lack of transparency harmonization of data models in health care is extremely cumbersome, thus work and know-how of completed clinical trials and routine documentation in hospitals are hard to be re-used. The MDM-Portal serves as an infrastructure for academic (non-commercial) medical research to contribute a solution to this problem. It already contains more than 4,000 system-independent forms (CDISC ODM Format, www.cdisc.org, Operational Data Model) with more than 380,000 dataelements. This enables researchers to view, discuss, download and export forms in most common technical formats such as PDF, CSV, Excel, SQL, SPSS, R, etc. A growing user community will lead to a growing database of medical forms. In this matter, we would like to encourage all medical researchers to register and add forms and discuss existing forms
    corecore