237 research outputs found

    A 3D US Guidance System for Permanent Breast Seed Implantation: Development and Validation

    Get PDF
    Permanent breast seed implantation (PBSI) is a promising breast radiotherapy technique that suffers from operator dependence. We propose and have developed an intraoperative 3D ultrasound (US) guidance system for PBSI. A tracking arm mounted to a 3D US scanner registers a needle template to the image. Images were validated for linear and volumetric accuracy, and image quality in a volunteer. The tracking arm was calibrated, and the 3D image registered to the scanner. Tracked and imaged needle positions were compared to assess accuracy and a patient-specific phantom procedure guided with the system. Median/mean linear and volumetric error was ±1.1% and ±4.1%, respectively, with clinically suitable volunteer scans. Mean tracking arm error was 0.43mm and 3D US target registration error ≤0.87mm. Mean needle tip/trajectory error was 2.46mm/1.55°. Modelled mean phantom procedure seed displacement was 2.50mm. To our knowledge, this is the first reported PBSI phantom procedure with intraoperative 3D image guidance

    Image fusion techniques in permanent seed implantation

    Full text link

    CT-Image Guided Brachytherapy

    Get PDF

    9 CT-Image Guided Brachytherapy

    Get PDF

    Therapeutic applications of radioactive sources: from image-guided brachytherapy to radio-guided surgical resection

    Get PDF
    It is well known nowadays that radioactivity can destroy the living cells it interacts with. It is therefore unsurprising that radioactive sources, such as iodine-125, were historically developed for treatment purposes within radiation oncology with the goal of damaging malignant cells. However, since then, new techniques have been invented that make creative use of the same radioactivity properties of these sources for medical applications. Here, we review two distinct kinds of therapeutic uses of radioactive sources with applications to prostate, cervical, and breast cancer: brachytherapy and radioactive seed localization. In brachytherapy (BT), the radioactive sources are used for internal radiation treatment. Current approaches make use of real-time image guidance, for instance by means of magnetic resonance imaging, ultrasound, computed tomography, and sometimes positron emission tomography, depending on clinical availability and cancer type. Such image-guided BT for prostate and cervical cancer presents a promising alternative and/or addition to external beam radiation treatments or surgical resections. Radioactive sources can also be used for radio-guided tumor localization during surgery, for which the example of iodine-125 seed use in breast cancer is given. Radioactive seed localization (RSL) is increasingly popular as an alternative tumor localization technique during breast cancer surgery. Advantages of applying RSL include added flexibility in the clinical scheduling logistics, an increase in tumor localization accuracy, and higher patient satisfaction; safety measures do however have to be employed. We exemply the implementation of RSL in a clinic through our experiences at the Netherlands Cancer Institute.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    Therapeutic applications of radioactive sources: From image-guided brachytherapyto radio-guided surgical resection

    Get PDF
    It is well known nowadays that radioactivity can destroy the living cells it interacts with. it is therefore unsurprising that radioactive sources, such as iodine-125, were historically developed for treatment purposes within radiation oncology with the goal of damaging malignant cells. however, since then, new techniques have been invented that make creative use of the same radioactivity properties of these sources for medi- cal applications. here, we review two distinct kinds of therapeutic uses of radioactive sources with applications to prostate, cervical, and breast cancer: brachytherapy and radioactive seed localization. in brachytherapy (BT), the radioactive sources are used for internal radiation treatment. current approaches make use of real-time image guidance, for instance by means of magnetic resonance imaging, ultrasound, computed tomog- raphy, and sometimes positron emission tomography, depending on clinical availability and cancer type. Such image-guided BT for prostate and cervical cancer presents a promising alternative and/or addition to external beam radiation treatments or surgical resections. radioactive sources can also be used for radio-guided tumor localization during surgery, for which the example of iodine-125 seed use in breast cancer is given. radioactive seed localization (rSl) is increasingly popular as an alternative tumor localization technique during breast cancer surgery. Advantages of applying RSL include added flexibility in the clinical scheduling logistics, an increase in tumor localization accuracy, and higher patient satisfaction; safety measures do however have to be employed. We exemply the implementation of rSl in a clinic through our experi- ences at the netherlands cancer institute

    Robot-Assisted Prostate Brachytherapy

    Get PDF
    Abstract: In contemporary brachytherapy procedures, needle placement at the desired target is challenging due to a variety of reasons. A robot-assisted brachytherapy system can potentially improve needle placement and seed delivery, resulting in enhanced therapeutic delivery. In this paper we present a 16 DOF (degrees-of-freedom) robotic system (9DOF positioning module and 7DOF surgery module) developed and fabricated for prostate brachytherapy. Strategies to reduce needle deflection and target movement were incorporated after extensive experimental validation. Provisions for needle motion and force feedback were included into the system for improving robot control and seed delivery. Preliminary experimental results reveal that the prototype system is sufficiently accurate in placing brachytherapy needles

    Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

    Get PDF
    This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications

    An Optimization-based Approach to Dosimetry Planning for Brachytherapy

    Get PDF
    Prostate cancer is the second leading cause of death from cancer in North American men, with a reported 32,050 deaths in the U.S. alone for 2010; lung cancer is reported as the number one leading cause of death from cancer in both men and women in North America, its estimated death toll in the U.S. alone in 2010 is over 157,000. One method of treating prostate cancer patients nowadays is by Low Dose Rate Brachytherapy, a process where radioactive seeds are placed in or near the tumor site to kill cancerous cells. For lung cancer, brachytherapy has begun to attract attention due to the advent of robotics assistance and there is increasing research currently in the area. While brachytherapy is gaining popularity as a commonly practiced method for treating cancer patients, the procedure itself has several drawbacks that require further research. One such drawback is that the dosimetry plan created based on the pre-operative imaging may not be accurate due to (a) the change in the tumor’s size as a result of the time elapsed between pre-operative imaging and seed implantation; and (b) movement of the organ under treatment from the position and orientation in pre­ operative imaging; this is particularly important in the case of lung brachytherapy as it would have to take into account lung deflation and respiratory and cardiac motions as well. In addition, seeds may be misplaced during implantation as a result of limitation of the manual or robotic procedures. When this happens, the final dose coverage of the tumor is no longer the same as the intended coverage in the dosimetry plan. In this thesis, the development, implementation and evaluation of two algorithms are presented.The first algorithm is the pre-planning algorithm, which aims to reduce the errors in the dosimetry plan caused by the change in the tumor’s size by providing a mechanism to perform dosimetry planning on-line. By doing this, the first algorithm can also eliminate the need for the patient to be imaged twice, so that the same set of images can be used for dosimetry planning as well as seed implantation. The second algorithm deals with intra-operative dynamic dose optimization, where real­ time seed compensation is performed to compensate for any seed misplacements so that an optimal final coverage can be achieved. The results of the experimental evaluation performed in this project indicate that these algorithms are feasible and have the potential to be applied in the operating room following appropriate animal and clinical validation
    • …
    corecore