1,234 research outputs found

    Causal evidence of the involvement of the right occipital face area in face-identity acquisition

    Get PDF
    There is growing evidence that the occipital face area (OFA), originally thought to be involved in the construction of a low-level representation of the physical features of a face, is also taking part in higher-level face processing. To test whether the OFA is causally involved in the learning of novel face identities, we have used transcranial magnetic stimulation (TMS) together with a sequential sorting – face matching paradigm (Andrews et al. 2015). First, participants sorted images of two unknown persons during the initial learning phase while either their right OFA or the Vertex was stimulated using TMS. In the subsequent test phase, we measured the participants’ face matching performance for novel images of the previously trained identities and for two novel identities. We found that face-matching performance accuracy was higher for the trained as compared to the novel identities in the vertex control group, suggesting that the sorting task led to incidental learning of the identities involved. However, no such difference was observed between trained and novel identities in the rOFA stimulation group. Our results support the hypothesis that the role of the rOFA is not limited to the processing of low-level physical features, but it has a significant causal role in face identity encoding and in the formation of identity-specific memory-traces

    The cognitive and neural basis of developmental prosopagnosia

    Get PDF
    Developmental prosopagnosia (DP) is a severe impairment of visual face recognition in the absence of any apparent brain damage. The factors responsible for DP have not yet been fully identified. This article provides a selective review of recent studies investigating cognitive and neural processes that may contribute to the face recognition deficits in DP, focusing primarily on event-related brain potential (ERP) measures of face perception and recognition. Studies that measured the face-sensitive N170 component as a marker of perceptual face processing have shown that the perceptual discrimination between faces and non-face objects is intact in DP. Other N170 studies suggest that faces are not represented in the typical fashion in DP. Individuals with DP appear to have specific difficulties in processing spatial and contrast deviations from canonical upright visual-perceptual face templates. The rapid detection of emotional facial expressions appears to be unaffected in DP. ERP studies of the activation of visual memory for individual faces and of the explicit identification of particular individuals have revealed differences between DPs and controls in the timing of these processes and in the links between visual face memory and explicit face recognition. These observations suggest that the speed and efficiency of information propagation through the cortical face network is altered in DP. The nature of the perceptual impairments in DP suggests that atypical visual experience with the eye region of faces over development may be an important contributing factor to DP

    Language processing from the perspective of electrical stimulation mapping

    Get PDF
    Electrical Stimulation (ES) is a neurostimulation technique that is used to localize language functions in the brain of people with intractable epilepsy and/or brain tumors. We reviewed 25 ES articles published between 1984 and 2018 and interpreted them from a cognitive neuropsychological perspective. Our aim was to highlight ES as a tool to further our understanding of cognitive models of language. We focused on associations and dissociations between cognitive functions within the framework of two non-neuroanatomically specified models of language. Also, we discussed parallels between the ES and the stroke literatures and showed how ES data can help us to generate hypotheses regarding how language is processed. A good understanding of cognitive models of language is essential to motivate task selection and to tailor surgical procedures, for example, by avoiding testing the same cognitive functions and understanding which functions may be more or less relevant to be tested during surgery

    Stroke of the Visual Cortex

    Get PDF
    Stroke is the leading cause of homonymous visual field defect (VFD), resulting from irreversible damage of the post-chiasmatic visual pathway. From 6 to 13% of ischaemic strokes affect the supply area of the posterior cerebral artery, including the visual cortex in the occipital lobe. Besides ischaemic injury, the visual cortex can be damaged by intracerebral haemorrhage (ICH), 10% of which reside in the occipital lobe. Since occipital stroke almost always disturbs vision but can leave motor and language functions untouched, it may remain unrecognised in the acute phase, withholding the patients from receiving recanalisation treatments. Moreover, only up to 25% of stroke-related VFD recover spontaneously, whereas the rest continue to hinder patients’ independence in daily living and quality of life. Despite rigorous efforts, no evidence-based rehabilitation method to restore vision after stroke has been established. The aim of this thesis was to study the recognition, clinical characteristics, rehabilitation, neural mechanisms, and outcome of occipital stroke patients with VFD. The retrospective part of the thesis consists of two cohorts. The first cohort comprised 245 occipital ischaemic stroke patients admitted to the neurological emergency department of Helsinki University Hospital due to visual symptoms in 2010‒2015. We investigated their prehospital recognition and diagnostic delays and analysed the obstacles in their access to acute stroke treatment. The second retrospective cohort was the Helsinki ICH Study registry of 1013 consecutive non-traumatic ICH patients treated at Helsinki University Hospital in 2005‒2010, among whom we searched for isolated occipital ICH patients and analysed their clinical characteristics, aetiology, outcome, and incidence of post-stroke epilepsy in comparison to ICHs of other location. The prospective part of the thesis was based on the multicentre, randomised, sham-controlled exploratory REVIS (Restoration of Vision after Stroke) trial that studied rehabilitation of persistent VFD after chronic occipital stroke with different methods of non-invasive electrical brain stimulation. Altogether 56 patients were included in three 10-day experiments in three centres. The centres examined: 1) repetitive transorbital alternating current stimulation (rtACS) vs transcranial direct current stimulation preceding rtACS (tDCS/rtACS) vs sham in Germany, 2) rtACS vs sham in Finland, and 3) tDCS vs sham in Italy. In a functional magnetic resonance imaging spin-off study, resting-state functional connectivity of occipital stroke patients receiving rtACS or sham was compared to healthy control subjects at baseline and to each other after intervention. We found out that the prehospital delay of occipital stroke patients ranged between 20 minutes and 5 weeks and only 20% were admitted within the 4.5-hour time window of intravenous thrombolysis. Consequently, only 6.5% received thrombolysis, which is the mainstay of acute stroke treatment. One fourth of the patients arrived through at least two points of care and as many were assessed by an ophthalmologist before entering the neurological care, even though acute stroke patients should be transported directly to the neurological emergency department. The diagnostic delay was primarily caused by the patients’ late contact to health care but was also attributed to poor recognition and misdiagnosis by health-care professionals. The incidence of isolated occipital ICH was 1.9% of all non-traumatic ICHs and 5.3% of lobar ICHs. The patients with occipital ICH were younger and had more often vascular malformations as an aetiology of the bleeding than the non-occipital lobar ICH patients. They presented with milder symptoms and longer delay, and over 60% of the patients suffered solely from visual focal symptom. The haematoma volume in the occipital lobe was smaller and grew less compared to the non-occipital lobar haemorrhages. All in all, the occipital location of ICH was independently associated with favourable outcome at discharge among the patients with lobar ICH. The majority of the occipital ICH patients were able to return to independent activities of daily living, including driving a car and working, within a follow-up of a year. However, post-stroke epilepsy was as frequent as after non-occipital lobar ICH. In the prospective REVIS trial, rtACS was mostly ineffective in vision rehabilitation according to behavioural vision tests. Neither did it affect resting-state functional connectivity in comparison to sham. Transcranial DCS alone increased the monocular visual field measured with standard automated perimetry. The combined tDCS/rtACS propelled some improvements in the secondary visual outcome measures but did not differ from the sham stimulation. All the stimulation modalities were tolerated well. The functional connectivity of the chronic occipital stroke patients with VFD did not differ from the healthy control subjects when the whole brain network was considered in the analyses. However, a few occipital regions close to the infarct expressed lower local connectivity to the highly connected regions of the network according to the network graph metrics, whereas a lateral occipital region in the damaged hemisphere had higher network connectivity. These findings support the view that chronic ischaemic damage of the visual cortex affects functional connectivity within the visual network but leaves global connectivity unchanged. In conclusion, occipital stroke patients are insufficiently recognised, and thus the awareness of visual stroke symptoms should be raised especially among the public but also among health-care professionals to provide the patients with timely acute treatment and to prevent permanent disability. Occipital ICH patients have relatively favourable outcomes, but a structural cause of bleeding should be searched. Non-invasive electrical brain stimulation with the examined modalities does not cause robust improvement in vision or functional connectivity of the brain networks after a 10-day treatment, but further experiments with tDCS-based methods, potentially in combination with vision training, may be worth pursuing.Ihmisen näköaivokuori sijaitsee pääosin takaraivolohkossa ja sen vaurio johtaa tyypillisesti molempien silmien toispuoleiseen näkökenttäpuutokseen. Yleisin syy vaurioon on aivoverenkiertohäiriö: joko aivovaltimon tukoksesta johtuva infarkti tai verisuonen repeämästä aiheutuva aivoverenvuoto. Näkökenttäpuutos alentaa toiminta-, työ- ja ajokykyä ja heikentää elämänlaatua. Alle neljäsosa näkökenttäpuutoksista paranee täysin, eikä niiden kuntouttamiseksi ole kliiniseen käyttöön vakiintunutta menetelmää. Väitöskirjatyössä tutkittiin näköaivokuoren aivoverenkiertohäiriöiden tunnistamista, kliinistä kuvaa, kuntoutusta ja ennustetta. Tutkimuksessa selvisi, että ainoastaan 20,8 % HUS:in neurologian päivystyksessä vuosina 2010–2015 hoidetuista, näköoirein ilmenneen takaraivolohkon infarktin saaneista potilaista tuli hoitoon liuotushoidon mahdollistavassa aikaikkunassa ja vain 6,5 % sai liuotuksen. Viiveen yleisin syy oli potilaiden hidas hakeutuminen hoitoon, mutta kolmasosassa tapauksista myöskään terveydenhuoltohenkilökunta ei aluksi tunnistanut oireiden johtuvan aivoverenkiertohäiriöstä. Takaraivolohkoon rajautuvia aivoverenvuotoja esiintyi 1,9 %:lla HUS:issa 2005–2010 hoidetusta 1013 aivoverenvuotopotilaasta. Potilaat olivat nuorempia ja lieväoireisempia kuin muut vuotopotilaat, ja heidän vuotonsa johtuivat useammin verisuoniepämuodostumista. Vuodon sijainti takaraivolohkossa ennusti parempaa toimintakykyä sairaalasta kotiutuessa, ja suurin osa potilaista toipui vuoden sisällä päivittäistoiminnoissa itsenäisiksi. Epilepsian ilmaantuvuus ei eronnut pitkäaikaisseurannassa muista aivoverenvuotopotilaista. Satunnaistetussa, lumekontrolloidussa REVIS-monikeskustutkimuksessa selvitettiin kajoamattomien, heikkoa sähkövirtaa hyödyntävien stimulaatiomenetelmien tehoa takaraivolohkon aivoinfarktin aiheuttaman kroonisen näkökenttäpuutoksen kuntoutuksessa. Hoitokokeessa tasavirtastimulaatio (tDCS) pienensi vaurion vastapuoleisen silmän näkökenttäpuutosta verrattuna lumehoitoon, kun taas vaihtovirtastimulaatio (rtACS) oli tehotonta. Myöskään näiden yhdistelmällä (tDCS/rtACS) tulokset eivät eronneet lumeesta. Lisäksi toiminnallisella magneettikuvauksella tutkittiin 16 takaraivolohkon aivoinfarktipotilaan lepohermoverkostojen toiminnallista kytkeytyvyyttä verrattuna terveisiin koehenkilöihin. Tutkimus paljasti paikallisia muutoksia kytkeytyvyydessä potilaiden näköinformaation käsittelyyn osallistuvilla aivoalueilla, mutta laajemmin verkostojen toiminta ei eronnut verrokeista. Vaihtovirtastimulaatio ei muuttanut toiminnallista kytkeytyvyyttä

    Network Dynamics of Visual Object Recognition

    Get PDF
    Visual object recognition is the principal mechanism by which humans and many animals interpret their surroundings. Despite the complexity of neural computation required, object recognition is achieved with such rapidity and accuracy that it appears to us almost effortless. Extensive human and non-human primate research has identified putative category-selective regions within higher-level visual cortex, which are thought to mediate object recognition. Despite decades of study, however, the functional organization and network dynamics within these regions remain poorly understood, due to a lack of appropriate animal models as well as the spatiotemporal limitations of current non-invasive human neuroimaging techniques (e.g. fMRI, scalp EEG). To better understand these issues, we leveraged the high spatiotemporal resolution of intracranial EEG (icEEG) recordings to study rapid, transient interactions between the disseminated cortical substrates within category-specific networks. Employing novel techniques for the topologically accurate and statistically robust analysis of grouped icEEG, we found that category-selective regions were spatially arranged with respect to cortical folding patterns, and relative to each other, to generate a hierarchical information structuring of visual information within higher-level visual cortex. This may facilitate rapid visual categorization by enabling the extraction of different levels of object detail across multiple spatial scales. To characterize network interactions between distributed regions sharing the same category-selectivity, we evaluated feed-forward, hierarchal and parallel, distributed models of information flow during face perception via measurements of cortical activation, functional and structural connectivity, and transient disruption through electrical stimulation. We found that input from early visual cortex (EVC) to two face-selective regions – the occipital and fusiform face areas (OFA and FFA, respectively) – occurred in a parallelized, distributed fashion: Functional connectivity between EVC and FFA began prior to the onset of subsequent re-entrant connectivity between the OFA and FFA. Furthermore, electrophysiological measures of structural connectivity revealed independent cortico- cortical connections between the EVC and both the OFA and FFA. Finally, direct disruption of the FFA, but not OFA, impaired face-perception. Given that the FFA is downstream of the OFA, these findings are incompatible with the feed-forward, hierarchical models of visual processing, and argue instead for the existence of parallel, distributed network interactions

    Mirror-touch synaesthesia: the role of shared representations in social cognition

    Get PDF
    Synaesthesia is a condition in which one property of a stimulus results in conscious experiences of an additional attribute. In mirror-touch synaesthesia, the synaesthete experiences a tactile sensation on their own body simply when observing touch to another person. This thesis investigates the prevalence, neurocognitive mechanisms, and consequences of mirror-touch synaesthesia. Firstly, the prevalence and neurocognitive mechanisms of synaesthesia were assessed. This revealed that mirrortouch synaesthesia has a prevalence rate of 1.6%, a finding which places mirror-touch synaesthesia as one of the most common variants of synaesthesia. It also indicated a number of characteristics of the condition, which led to the generation of a neurocognitive model of mirror-touch synaesthesia. An investigation into the perceptual consequences of synaesthesia revealed that the presence of synaesthesia is linked with heightened sensory perception - mirror-touch synaesthetes showed heightened tactile perception and grapheme-colour synaesthetes showed heightened colour perception. Given that mirror-touch synaesthesia has been shown to be linked to heightened sensorimotor simulation mechanisms, the impact of facilitated sensorimotor activity on social cognition was then examined. This revealed that mirror-touch synaesthetes show heightened emotional sensitivity compared with control participants. To compliment this, two transcranial magnetic stimulation (TMS) studies were then conducted to assess the impact of suppressing sensorimotor activity on the expression recognition abilities of healthy adults. Consistent with the findings of superior emotion sensitivity in mirror-touch synaesthesia (where there is facilitated sensorimotor activity), suppressing sensorimotor resources resulted in impaired expression recognition across modalities. The findings of the thesis are discussed in relation to neurocognitive models of synaesthesia and of social cognition

    High-Frequency Transcranial Random Noise Stimulation Enhances Perception of Facial Identity

    Get PDF
    Recently, a number of studies have demonstrated the utility of transcranial current stimulation as a tool to facilitate a variety of cognitive and perceptual abilities. Few studies, though, have examined the utility of this approach for the processing of social information. Here, we conducted 2 experiments to explore whether a single session of high-frequency transcranial random noise stimulation (tRNS) targeted at lateral occipitotemporal cortices would enhance facial identity perception. In Experiment 1, participants received 20 min of active high-frequency tRNS or sham stimulation prior to completing the tasks examining facial identity perception or trustworthiness perception. Active high-frequency tRNS facilitated facial identity perception, but not trustworthiness perception. Experiment 2 assessed the spatial specificity of this effect by delivering 20 min of active high-frequency tRNS to lateral occipitotemporal cortices or sensorimotor cortices prior to participants completing the same facial identity perception task used in Experiment 1. High-frequency tRNS targeted at lateral occipitotemporal cortices enhanced performance relative to motor cortex stimulation. These findings show that high-frequency tRNS to lateral occipitotemporal cortices produces task-specific and site-specific enhancements in face perception

    Perceptual face processing in developmental prosopagnosia is not sensitive to the canonical location of face parts

    Get PDF
    Individuals with developmental prosopagnosia (DP) are strongly impaired in recognizing faces, but it is controversial whether this deficit is linked to atypical visual-perceptual face processing mechanisms. Previous behavioural studies have suggested that face perception in DP might be less sensitive to the canonical spatial configuration of face parts in upright faces. To test this prediction, we recorded event-related brain potentials (ERPs) to intact upright faces and to faces with spatially scrambled parts (eyes, nose, and mouth) in a group of ten participants with DP and a group of ten age-matched control participants with normal face recognition abilities. The face-sensitive N170 component and the vertex positive potential (VPP) were both enhanced and delayed for scrambled as compared to intact faces in the control group. In contrast, N170 and VPP amplitude enhancements to scrambled faces were absent in the DP group. For control participants, the N170 to scrambled faces was also sensitive to feature locations, with larger and delayed N170 components contralateral to the side where all features appeared in a non-canonical position. No such differences were present in the DP group. These findings suggest that spatial templates of the prototypical feature locations within an upright face are selectively impaired in DP

    Robust eye coding mechanisms in humans during face detection

    Get PDF
    We can detect faces more rapidly and efficiently compared to non-face object categories (Bell et al., 2008; Crouzet, 2011), even when only partial information is visible (Tang et al., 2014). Face inversion impairs our ability to recognise faces. The key to understand this effect is to determine what special face features are processed and how coding of these features is affected by face inversion. Previous studies from our lab showed coding of the contralateral eye in an upright face detection task, which was maximal around the N170 recorded at posterior-lateral electrodes (Ince et al., 2016b; Rousselet et al., 2014). In chapter 2, we used the Bubble technique to determine whether brain responses also reflect the processing of eyes in inverted faces and how it does so in a simple face detection task. The results suggest that in upright and inverted faces alike the N170 reflects coding of the contralateral eye, but face inversion quantitatively weakens the early processing of the contralateral eye, specifically in the transition between the P1 and the N170 and delays this local feature coding. Group and individual results support this claim. First, regardless of face orientation, the N170 coded the eyes contralateral to the posterior-lateral electrodes, which was the case in all participants. Second, face inversion delayed coding of contralateral eye information. Third, time course analysis of contralateral eye coding revealed weaker contralateral eye coding for inverted compared to upright faces in the transition between the P1 and the N170. Fourth, single-trial EEG responses were driven by the corresponding single-trial visibility of the left eye. The N170 amplitude was larger and latency shorter as the left eye visibility increased in upright and upside-down faces for the majority of participants. However, for images of faces, eye position and face orientation were confounded, i.e., the upper visual field usually contains eyes in upright faces; in upside-down faces lower visual field contains eyes. Thus, the impaired processing of the contralateral eye by inversion might be simply attributed to that face inversion removes the eyes away from upper visual filed. In chapter 3, we manipulated three vertical locations of images in which eyes are presented in upper, centre and lower visual field relative to fixation cross (the centre of the screen) so that in upright and inverted faces the eyes can shift from the upper to the lower visual field. We used the similar technique as in chapter 2 during a face detection task. First, we found 2 that regardless of face orientation and position, the modulations of ERPs recorded at the posterior-lateral electrodes were associated with the contralateral eye. This suggests that coding of the contralateral eye underlying the N170. Second, face inversion delayed processing of the contralateral eye when the eyes of faces were presented in the same position, Above, Below or at the Centre of the screen. Also, in the early N170, most of our participants showed weakened contralateral eye sensitivity by inversion of faces, of which the eyes appeared in the same position. The results suggest that face inversion related changes in processing of the contralateral eye cannot be simply considered as the results of differences of eye position. The scan-paths traced by human eye movements are similar to the low-level computation saliency maps produced by contrast based computer vision algorithms (Itti et al., 1998). This evidence leads us to a question of whether the coding function to encode the eyes is due to the significance in the eye regions. In chapter 4, we aim to answer the question. We introduced two altered version of original faces: normalised and reversed contrast faces in a face detection task - removing eye saliency (Simoncelli and Olshausen, 2001) and reversing face contrast polarity (Gilad et al., 2009) in a simple face detection task. In each face condition, we observed ERPs, that recorded at contralateral posterior lateral electrodes, were sensitive to eye regions. Both contrast manipulations delayed and reduced eye sensitivity during the rising part of the N170, roughly 120 – 160 ms post-stimulus onset. Also, there were no such differences between two contrast-manipulated faces. These results were observed in the majority of participants. They suggest that the processing of contralateral eye is due partially to low-level factors and may reflect feature processing in the early N170
    • …
    corecore