4 research outputs found

    Intracell interference characterization and cluster interference for D2D communication

    Get PDF
    The homogeneous spatial Poisson point process (SPPP) is widely used for spatial modeling of mobile terminals (MTs). This process is characterized by a homogeneous distribution, complete spatial independence, and constant intensity measure. However, it is intuitive to understand that the locations of MTs are neither homogeneous, due to inhomogeneous terrain, nor independent, due to homophilic relations. Moreover, the intensity is not constant due to mobility. Therefore, assuming an SPPP for spatial modeling is too simplistic, especially for modeling realistic emerging device-centric frameworks such as device-to-device (D2D) communication. In this paper, assuming inhomogeneity, positive spatial correlation, and random intensity measure, we propose a doubly stochastic Poisson process, a generalization of the homogeneous SPPP, to model D2D communication. To this end, we assume a permanental Cox process (PCP) and propose a novel Euler-Characteristic-based approach to approximate the nearest-neighbor distribution function. We also propose a threshold and spatial distances from an excursion set of a chi-square random field as interference control parameters for different cluster sizes. The spatial distance of the clusters is incorporated into a Laplace functional of a PCP to analyze the average coverage probability of a cellular user. A closed-form approximation of the spatial summary statistics is in good agreement with empirical results, and its comparison with an SPPP authenticates the correlation modeling of D2D nodes

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore