5,074 research outputs found

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    Multiple description video coding for stereoscopic 3D

    Get PDF
    In this paper, we propose an MDC schemes for stereoscopic 3D video. In the literature, MDC has previously been applied in 2D video but not so much in 3D video. The proposed algorithm enhances the error resilience of the 3D video using the combination of even and odd frame based MDC while retaining good temporal prediction efficiency for video over error-prone networks. Improvements are made to the original even and odd frame MDC scheme by adding a controllable amount of side information to improve frame interpolation at the decoder. The side information is also sent according to the video sequence motion for further improvement. The performance of the proposed algorithms is evaluated in error free and error prone environments especially for wireless channels. Simulation results show improved performance using the proposed MDC at high error rates compared to the single description coding (SDC) and the original even and odd frame MDC

    On object-based compression for a class of dynamic image-based representations

    Get PDF
    An object-based compression scheme for a class of dynamic image-based representations called "plenoptic videos" (PVs) is studied in this paper. PVs are simplified dynamic light fields in which the videos are taken at regularly spaced locations along a line segment instead of a 2-D plane. To improve the rendering quality in scenes with large depth variations and support the functionalities at the object level for rendering, an object-based compression scheme is employed for the coding of PVs. Besides texture and shape information, the compression of geometry information in the form of depth maps is also supported. The proposed compression scheme exploits both the temporal and spatial redundancy among video object streams in the PV to achieve higher compression efficiency. Experimental results show that considerable improvements in coding performance are obtained for both synthetic and real scenes. Moreover, object-based functionalities such as rendering individual image-based objects are also illustrated. Š 2005 IEEE.published_or_final_versio
    • …
    corecore